Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with Go Quick Start Guide

You're reading from   Machine Learning with Go Quick Start Guide Hands-on techniques for building supervised and unsupervised machine learning workflows

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781838550356
Length 168 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Michael Bironneau Michael Bironneau
Author Profile Icon Michael Bironneau
Michael Bironneau
Toby Coleman Toby Coleman
Author Profile Icon Toby Coleman
Toby Coleman
Arrow right icon
View More author details
Toc

Introducing Machine Learning with Go

All around us, automation is changing our lives in subtle increments that live on the bleeding edge of mathematics and computer science. What do a Nest thermostat, Netflix's movie recommendations and Google's Images search algorithm all have in common? Created by some of the brightest minds in todays software industry, these technologies all rely on machine learning (ML) techniques.

In February 2019, Crunchbase listed over 4,700 companies that categorized themselves as Artificial Intelligence (AI) or ML[1]. Most of these companies were very early stage and funded by angel investors or early round funding from venture capitalists. Yet articles in 2017 and 2018 by Crunchbase, and the UK Financial Times, center around a common recognition that ML is increasingly relied upon for sustained growth[2], and that its increasing maturity will lead to even more widespread applications[3], particularly if challenges around the opacity of decisions made by ML algorithms can be solved[4]. The New York Times even has a column dedicated to ML[5], a tribute to its importance in everyday life.

This book will teach a software engineer with intermediate knowledge of the Go programming language how to write and produce an ML application from concept to deployment, and beyond. We will first categorize problems suitable for ML techniques and the life cycle of ML applications. Then, we will explain how to set up a development environment specifically suited for data science with the Go language. Then, we will provide a practical guide to the main ML algorithms, their implementations, and their pitfalls. We will also provide some guidance on using ML models produced using other programming languages and integrating them in Go applications. Finally, we will consider different deployment models and the elusive intersection between DevOps and data science. We will conclude with some remarks on managing ML projects from our own experience.

ML theory is a mathematically advanced subject, but you can develop ML applications without fully understanding it. This book will help you develop an intuition for which algorithms to use and how to formulate problems with only basic mathematical knowledge.

In our first chapter, we will introduce some fundamental concepts of Go ML applications:

  • What is ML?
  • Types of ML problems
  • Why write ML applications in Go?
  • The ML development life cycle
You have been reading a chapter from
Machine Learning with Go Quick Start Guide
Published in: May 2019
Publisher: Packt
ISBN-13: 9781838550356
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime