Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning Techniques for Text

You're reading from   Machine Learning Techniques for Text Apply modern techniques with Python for text processing, dimensionality reduction, classification, and evaluation

Arrow left icon
Product type Paperback
Published in Oct 2022
Publisher Packt
ISBN-13 9781803242385
Length 448 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Nikos Tsourakis Nikos Tsourakis
Author Profile Icon Nikos Tsourakis
Nikos Tsourakis
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Chapter 1: Introducing Machine Learning for Text 2. Chapter 2: Detecting Spam Emails FREE CHAPTER 3. Chapter 3: Classifying Topics of Newsgroup Posts 4. Chapter 4: Extracting Sentiments from Product Reviews 5. Chapter 5: Recommending Music Titles 6. Chapter 6: Teaching Machines to Translate 7. Chapter 7: Summarizing Wikipedia Articles 8. Chapter 8: Detecting Hateful and Offensive Language 9. Chapter 9: Generating Text in Chatbots 10. Chapter 10: Clustering Speech-to-Text Transcriptions 11. Index 12. Other Books You May Enjoy

Classifying Topics of Newsgroup Posts

The large volumes of unstructured text that large corporations and organizations need to sort daily necessitate automatizing tedious and time-consuming manual tasks. The good news is that machine learning (ML) is also of assistance when analyzing this type of data. This chapter will educate us on how to tag a text document using a list of predefined topics. The aim is to assign each sample to one and only one label, which becomes more challenging as the number of topics increases.

We will attack the problem by utilizing supervised and unsupervised ML techniques. First, we expand on the basic exploratory data analysis presented in the previous chapter and create richer visualizations with extra meaning and depth. The transformation of data from a high-dimensional space into a low-dimensional one assists in this task, so we will discuss pertinent techniques throughout the chapter. Then, we will implement two classifiers using one of Python’...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime