Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning Solutions

You're reading from   Machine Learning Solutions Expert techniques to tackle complex machine learning problems using Python

Arrow left icon
Product type Paperback
Published in Apr 2018
Publisher Packt
ISBN-13 9781788390040
Length 566 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Jalaj Thanaki Jalaj Thanaki
Author Profile Icon Jalaj Thanaki
Jalaj Thanaki
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Machine Learning Solutions
Foreword
Contributors
Preface
1. Credit Risk Modeling FREE CHAPTER 2. Stock Market Price Prediction 3. Customer Analytics 4. Recommendation Systems for E-Commerce 5. Sentiment Analysis 6. Job Recommendation Engine 7. Text Summarization 8. Developing Chatbots 9. Building a Real-Time Object Recognition App 10. Face Recognition and Face Emotion Recognition 11. Building Gaming Bot List of Cheat Sheets Strategy for Wining Hackathons Index

Feature engineering for the baseline model


For this application, we will be using a basic statistical feature extraction concept in order to generate the features from raw text data. In the NLP domain, we need to convert raw text into a numerical format so that the ML algorithm can be applied to that numerical data. There are many techniques available, including indexing, count based vectorization, Term Frequency - Inverse Document Frequency (TF-IDF ), and so on. I have already discussed the concept of TF-IDF in Chapter 4, Generate features using TF-IDF:

Note

Indexing is basically used for fast data retrieval. In indexing, we provide a unique identification number. This unique identification number can be assigned in alphabetical order or based on frequency. You can refer to this link: http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html

Count-based vectorization sorts the words in alphabetical order and if a particular word is present then its vector value...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime