Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning for Finance

You're reading from   Machine Learning for Finance Principles and practice for financial insiders

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781789136364
Length 456 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Jannes Klaas Jannes Klaas
Author Profile Icon Jannes Klaas
Jannes Klaas
James Le James Le
Author Profile Icon James Le
James Le
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Machine Learning for Finance
Contributors
Preface
Other Books You May Enjoy
1. Neural Networks and Gradient-Based Optimization 2. Applying Machine Learning to Structured Data FREE CHAPTER 3. Utilizing Computer Vision 4. Understanding Time Series 5. Parsing Textual Data with Natural Language Processing 6. Using Generative Models 7. Reinforcement Learning for Financial Markets 8. Privacy, Debugging, and Launching Your Products 9. Fighting Bias 10. Bayesian Inference and Probabilistic Programming Index

Summary


In this chapter, you have learned about the two most important types of generative models: autoencoders and GANs. We first developed an autoencoder for MNIST images. We then used a similar architecture to encode credit card data and detect fraud. Afterward, we expanded the autoencoder to a VAE. This allowed us to learn distributions of encodings and generate new data that we could use for training.

Afterward, we learned about GANs, again first in the context of MNIST images and then in the context of credit card fraud. We used an SGAN to reduce the amount of data we needed to train our fraud detector. We used model outputs to reduce the amount of labeling necessary through active learning and smarter labeling interfaces.

We've also discussed and learned about latent spaces and the use they have for financial analysis. We saw the t-SNE algorithm and how it can be used to visualize higher dimensional (latent) data. You also got a first impression of how machine learning can solve game...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime