Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
LLM Engineer's Handbook

You're reading from   LLM Engineer's Handbook Master the art of engineering large language models from concept to production

Arrow left icon
Product type Paperback
Published in Oct 2024
Publisher Packt
ISBN-13 9781836200079
Length 522 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Maxime Labonne Maxime Labonne
Author Profile Icon Maxime Labonne
Maxime Labonne
Paul Iusztin Paul Iusztin
Author Profile Icon Paul Iusztin
Paul Iusztin
Alex Vesa Alex Vesa
Author Profile Icon Alex Vesa
Alex Vesa
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Understanding the LLM Twin Concept and Architecture 2. Tooling and Installation FREE CHAPTER 3. Data Engineering 4. RAG Feature Pipeline 5. Supervised Fine-Tuning 6. Fine-Tuning with Preference Alignment 7. Evaluating LLMs 8. Inference Optimization 9. RAG Inference Pipeline 10. Inference Pipeline Deployment 11. MLOps and LLMOps 12. Other Books You May Enjoy
13. Index
Appendix: MLOps Principles

Data Engineering

This chapter will begin exploring the LLM Twin project in more depth. We will learn how to design and implement the data collection pipeline to gather the raw data we will use in all our LLM use cases, such as fine-tuning or inference. As this is not a book on data engineering, we will keep this chapter short and focus only on what is strictly necessary to collect the required raw data. Starting with Chapter 4, we will concentrate on LLMs and GenAI, exploring its theory and concrete implementation details.

When working on toy projects or doing research, you usually have a static dataset with which you work. But in our LLM Twin use case, we want to mimic a real-world scenario where we must gather and curate the data ourselves. Thus, implementing our data pipeline will connect the dots regarding how an end-to-end ML project works. This chapter will explore how to design and implement an Extract, Transform, Load (ETL) pipeline that crawls multiple social platforms...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime