Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning Hadoop 2

You're reading from   Learning Hadoop 2 Design and implement data processing, lifecycle management, and analytic workflows with the cutting-edge toolbox of Hadoop 2

Arrow left icon
Product type Paperback
Published in Feb 2015
Publisher Packt
ISBN-13 9781783285518
Length 382 pages
Edition 1st Edition
Tools
Arrow right icon
Toc

Table of Contents (13) Chapters Close

Preface 1. Introduction FREE CHAPTER 2. Storage 3. Processing – MapReduce and Beyond 4. Real-time Computation with Samza 5. Iterative Computation with Spark 6. Data Analysis with Apache Pig 7. Hadoop and SQL 8. Data Lifecycle Management 9. Making Development Easier 10. Running a Hadoop Cluster 11. Where to Go Next Index

Building a tweet analysis capability


In earlier chapters, we used various implementations of Twitter data analysis to describe several concepts. We will take this capability to a deeper level and approach it as a major case study.

In this chapter, we will build a data ingest pipeline, constructing a production-ready dataflow that is designed with reliability and future evolution in mind.

We'll build out the pipeline incrementally throughout the chapter. At each stage, we'll highlight what has changed but can't include full listings at each stage without trebling the size of the chapter. The source code for this chapter, however, has every iteration in its full glory.

Getting the tweet data

The first thing we need to do is get the actual tweet data. As in previous examples, we can pass the -j and -n arguments to stream.py to dump JSON tweets to stdout:

$ stream.py -j -n 10000 > tweets.json

Since we have this tool that can create a batch of sample tweets on demand, we could start our ingest...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image