Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning Bayesian Models with R

You're reading from   Learning Bayesian Models with R Become an expert in Bayesian Machine Learning methods using R and apply them to solve real-world big data problems

Arrow left icon
Product type Paperback
Published in Oct 2015
Publisher Packt
ISBN-13 9781783987603
Length 168 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Hari Manassery Koduvely Hari Manassery Koduvely
Author Profile Icon Hari Manassery Koduvely
Hari Manassery Koduvely
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Introducing the Probability Theory FREE CHAPTER 2. The R Environment 3. Introducing Bayesian Inference 4. Machine Learning Using Bayesian Inference 5. Bayesian Regression Models 6. Bayesian Classification Models 7. Bayesian Models for Unsupervised Learning 8. Bayesian Neural Networks 9. Bayesian Modeling at Big Data Scale Index

Bayesian theorem

From the definition of the conditional probabilities Bayesian theorem and Bayesian theorem, it is easy to show the following:

Bayesian theorem

Rev. Thomas Bayes (1701–1761) used this rule and formulated his famous Bayes theorem that can be interpreted if Bayesian theorem represents the initial degree of belief (or prior probability) in the value of a random variable A before observing B; then, its posterior probability or degree of belief after accounted for B will get updated according to the preceding equation. So, the Bayesian inference essentially corresponds to updating beliefs about an uncertain system after having made some observations about it. In the sense, this is also how we human beings learn about the world. For example, before we visit a new city, we will have certain prior knowledge about the place after reading from books or on the Web.

However, soon after we reach the place, this belief will get updated based on our initial experience of the place. We continuously update the belief as we explore the new city more and more. We will describe Bayesian inference more in detail in Chapter 3, Introducing Bayesian Inference.

You have been reading a chapter from
Learning Bayesian Models with R
Published in: Oct 2015
Publisher: Packt
ISBN-13: 9781783987603
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image