Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Introduction to R for Business Intelligence

You're reading from   Introduction to R for Business Intelligence Profit optimization using data mining, data analysis, and Business Intelligence

Arrow left icon
Product type Paperback
Published in Aug 2016
Publisher Packt
ISBN-13 9781785280252
Length 228 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Jay Gendron Jay Gendron
Author Profile Icon Jay Gendron
Jay Gendron
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Extract, Transform, and Load FREE CHAPTER 2. Data Cleaning 3. Exploratory Data Analysis 4. Linear Regression for Business 5. Data Mining with Cluster Analysis 6. Time Series Analysis 7. Visualizing the Datas Story 8. Web Dashboards with Shiny A. References
B. Other Helpful R Functions C. R Packages Used in the Book
D. R Code for Supporting Market Segment Business Case Calculations

Using a simple linear regression


You built a linear regression model by simply using the lm() function on your data. You also used the LINE approach to make sure that your model satisfied the assumptions of linear regression. Building SLRs is often straightforward, but it is very important that you know how to interpret the output.

Interpreting model output

There is a lot of information available within a linear regression model. You can see an expanded output by using the summary() function:

summary(model1) 

The following is the output:

Call:
lm(formula = revenues ~ marketing_total, data = adverts)
Residuals:
    Min      1Q  Median      3Q     Max 
-8.6197 -1.8963 -0.0006  2.1705  9.3689 
Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)     32.006696   0.635590   50.36   <2e-16 ***
marketing_total  0.051929   0.002437   21.31   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.054 on 170 degrees...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image