Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

You're reading from   Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits A practical guide to implementing supervised and unsupervised machine learning algorithms in Python

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781838826048
Length 384 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Tarek Amr Tarek Amr
Author Profile Icon Tarek Amr
Tarek Amr
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1: Supervised Learning
2. Introduction to Machine Learning FREE CHAPTER 3. Making Decisions with Trees 4. Making Decisions with Linear Equations 5. Preparing Your Data 6. Image Processing with Nearest Neighbors 7. Classifying Text Using Naive Bayes 8. Section 2: Advanced Supervised Learning
9. Neural Networks – Here Comes Deep Learning 10. Ensembles – When One Model Is Not Enough 11. The Y is as Important as the X 12. Imbalanced Learning – Not Even 1% Win the Lottery 13. Section 3: Unsupervised Learning and More
14. Clustering – Making Sense of Unlabeled Data 15. Anomaly Detection – Finding Outliers in Data 16. Recommender System – Getting to Know Their Taste 17. Other Books You May Enjoy

Deploying machine learning models in production

There are two main modes of using machine learning models:

  • Batch predictions: In this mode, you load a bunch of data records after a certain period—for example, every night or every month. You then make predictions for this data. Usually, latency is not an issue here, and you can afford to put your training and prediction code into single batch jobs. One exception to this is if you need to run your job too frequently that you do not have enough time to retrain the model every time the job runs. Then, it makes sense to train the model once, store it somewhere, and load it each time new batch predictions are to be made.
  • Online predictions: In this model, your model is usually deployed behind anApplication Programming Interface (API). Your API is usually called with a single data record each time, and it is supposed to make predictions for this single record and return it. Having low latency is...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image