Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Ensemble Learning with Python

You're reading from   Hands-On Ensemble Learning with Python Build highly optimized ensemble machine learning models using scikit-learn and Keras

Arrow left icon
Product type Paperback
Published in Jul 2019
Publisher Packt
ISBN-13 9781789612851
Length 298 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Konstantinos G. Margaritis Konstantinos G. Margaritis
Author Profile Icon Konstantinos G. Margaritis
Konstantinos G. Margaritis
George Kyriakides George Kyriakides
Author Profile Icon George Kyriakides
George Kyriakides
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: Introduction and Required Software Tools
2. A Machine Learning Refresher FREE CHAPTER 3. Getting Started with Ensemble Learning 4. Section 2: Non-Generative Methods
5. Voting 6. Stacking 7. Section 3: Generative Methods
8. Bagging 9. Boosting 10. Random Forests 11. Section 4: Clustering
12. Clustering 13. Section 5: Real World Applications
14. Classifying Fraudulent Transactions 15. Predicting Bitcoin Prices 16. Evaluating Sentiment on Twitter 17. Recommending Movies with Keras 18. Clustering World Happiness 19. Another Book You May Enjoy

Gradient boosting

Gradient boosting is another boosting algorithm. It is a more generalized boosting framework compared to AdaBoost, which also makes it more complicated and math-intensive. Instead of trying to emphasize problematic instances by assigning weights and resampling the dataset, gradient boosting builds each base learner on the previous learner's errors. Furthermore, gradient boosting uses decision trees of varying depths. In this section, we will present gradient boosting, without delving much into the math involved. Instead, we will present the basic concepts, as well as a custom Python implementation.

Creating the ensemble

The gradient boosting algorithm (for regression purposes) starts by calculating the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime