Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Data Analysis with Scala

You're reading from   Hands-On Data Analysis with Scala Perform data collection, processing, manipulation, and visualization with Scala

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781789346114
Length 298 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Rajesh Gupta Rajesh Gupta
Author Profile Icon Rajesh Gupta
Rajesh Gupta
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Section 1: Scala and Data Analysis Life Cycle FREE CHAPTER
2. Scala Overview 3. Data Analysis Life Cycle 4. Data Ingestion 5. Data Exploration and Visualization 6. Applying Statistics and Hypothesis Testing 7. Section 2: Advanced Data Analysis and Machine Learning
8. Introduction to Spark for Distributed Data Analysis 9. Traditional Machine Learning for Data Analysis 10. Section 3: Real-Time Data Analysis and Scalability
11. Near Real-Time Data Analysis Using Streaming 12. Working with Data at Scale 13. Another Book You May Enjoy

Reliability considerations

Processing large datasets requires reliability to be looked at from a slightly different point of view. It is quite common to have a small percentage of errors in such large datasets. An acceptable error tolerance level can only be defined by business rules. Large datasets are generally processed by a network of computers, where failures are more common compared to processing on a single computer. In this section, we will look at the following aspects of error handling:

  • Input data errors
  • Processing failures

Input data errors

As a general guideline, it is crucial to measure and monitor the number of errors in the input data over time. If the quality of the input data is bad, then any analysis performed...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime