Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Feature Engineering Made Easy

You're reading from   Feature Engineering Made Easy Identify unique features from your dataset in order to build powerful machine learning systems

Arrow left icon
Product type Paperback
Published in Jan 2018
Publisher Packt
ISBN-13 9781787287600
Length 316 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Divya Susarla Divya Susarla
Author Profile Icon Divya Susarla
Divya Susarla
Sinan Ozdemir Sinan Ozdemir
Author Profile Icon Sinan Ozdemir
Sinan Ozdemir
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Introduction to Feature Engineering 2. Feature Understanding – What's in My Dataset? FREE CHAPTER 3. Feature Improvement - Cleaning Datasets 4. Feature Construction 5. Feature Selection 6. Feature Transformations 7. Feature Learning 8. Case Studies 9. Other Books You May Enjoy

Summary

Feature engineering is a massive task to be undertaken by data scientists and machine learning engineers. It is a task that is imperative to having successful and production-ready machine learning pipelines. In the coming seven chapters, we are going to explore six major aspects of feature engineering:

  • Feature understanding: learning how to identify data based on its qualities and quantitative state
  • Feature improvement: cleaning and imputing missing data values in order to maximize the dataset's value
  • Feature selection -statistically selecting and subsetting feature sets in order to reduce the noise in our data
  • Feature construction - building new features with the intention of exploiting feature interactions
  • Feature transformation - extracting latent (hidden) structure within datasets in order to mathematically transform our datasets into something new (and usually better)
  • Feature learning - harnessing the power of deep learning to view data in a whole new light that will open up new problems to be solved.

In this book, we will be exploring feature engineering as it relates to our machine learning endeavors. By breaking down this large topic into our subtopics and diving deep into each one in separate chapters, we will be able to get a much broader and more useful understanding of how these procedures work and how to apply each one in Python.

In our next chapter, we will dive straight into our first subsection, Feature understanding. We will finally be getting our hands on some real data, so let's begin!

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime