Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning with PyTorch Quick Start Guide

You're reading from   Deep Learning with PyTorch Quick Start Guide Learn to train and deploy neural network models in Python

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781789534092
Length 158 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
David Julian David Julian
Author Profile Icon David Julian
David Julian
Arrow right icon
View More author details
Toc

Computational Graphs and Linear Models

By now you should have an understanding of the theory of linear models and neural networks, as well as a knowledge of the fundamentals of PyTorch. In this chapter, we will be putting all this together by implementing some ANNs in PyTorch. We will focus on the implementation of linear models, and show how they can be adapted to perform multi-class classification. We will discuss the following topics in relation to PyTorch:

  • autograd
  • Computational graphs
  • Linear regression
  • Logistic regression
  • Multi-class classification
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime