Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Data Science for Marketing Analytics

You're reading from   Data Science for Marketing Analytics Achieve your marketing goals with the data analytics power of Python

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher
ISBN-13 9781789959413
Length 420 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Tommy Blanchard Tommy Blanchard
Author Profile Icon Tommy Blanchard
Tommy Blanchard
Debasish Behera Debasish Behera
Author Profile Icon Debasish Behera
Debasish Behera
Pranshu Bhatnagar Pranshu Bhatnagar
Author Profile Icon Pranshu Bhatnagar
Pranshu Bhatnagar
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Data Science for Marketing Analytics
Preface
1. Data Preparation and Cleaning FREE CHAPTER 2. Data Exploration and Visualization 3. Unsupervised Learning: Customer Segmentation 4. Choosing the Best Segmentation Approach 5. Predicting Customer Revenue Using Linear Regression 6. Other Regression Techniques and Tools for Evaluation 7. Supervised Learning: Predicting Customer Churn 8. Fine-Tuning Classification Algorithms 9. Modeling Customer Choice Appendix

Random Forest


The decision tree algorithm that we saw earlier faced the problem of overfitting. Since we fit only one tree on the training data, there is a high chance that the tree will overfit the data without proper pruning. The random forest algorithm reduces variance/overfitting by averaging multiple decision trees, which individually suffer from high variance.

Random forest is an ensemble method of supervised machine learning. Ensemble methods combine predictions obtained from multiple base estimators/classifiers to improve the overall prediction/robustness. Ensemble methods are divided into the following two types:

  • Bagging: The data is randomly divided into several subsets and the model is trained over each of these subsets. Several estimators are built independently from each other and then the predictions are averaged together, which ultimately helps to reduce variance (overfitting).

  • Boosting: In the case of boosting, base estimators are built sequentially and each model built is...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image