Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Analytics for Marketing

You're reading from   Data Analytics for Marketing A practical guide to analyzing marketing data using Python

Arrow left icon
Product type Paperback
Published in May 2024
Publisher Packt
ISBN-13 9781803241609
Length 452 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Guilherme Diaz-Bérrio Guilherme Diaz-Bérrio
Author Profile Icon Guilherme Diaz-Bérrio
Guilherme Diaz-Bérrio
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Part 1: Fundamentals of Analytics
2. Chapter 1: What is Marketing Analytics? FREE CHAPTER 3. Chapter 2: Extracting and Exploring Data with Singer and pandas 4. Chapter 3: Design Principles and Presenting Results with Streamlit 5. Chapter 4: Econometrics and Causal Inference with Statsmodels and PyMC 6. Part 2: Planning Ahead
7. Chapter 5: Forecasting with Prophet, ARIMA, and Other Models Using StatsForecast 8. Chapter 6: Anomaly Detection with StatsForecast and PyMC 9. Part 3: Who and What to Target
10. Chapter 7: Customer Insights – Segmentation and RFM 11. Chapter 8: Customer Lifetime Value with PyMC Marketing 12. Chapter 9: Customer Survey Analysis 13. Chapter 10: Conjoint Analysis with pandas and Statsmodels 14. Part 4: Measuring Effectiveness
15. Chapter 11: Multi-Touch Digital Attribution 16. Chapter 12: Media Mix Modeling with PyMC Marketing 17. Chapter 13: Running Experiments with PyMC 18. Index 19. Other Books You May Enjoy

Summary

In this chapter, we dove deeper into what a media mix model is and what it is used for. We discussed what data we should gather and how to transform it. We also discussed different adstock models and how to account for media saturation. Finally, we went through an example of how to fit a media mix model using PyMC Marketing with synthetic data, to understand how we could recover the original parameters.

You now know how to discuss and evaluate a media mix model, understanding its strengths and limitations. You can extract the correct data needed to operationalize one, ensuring reliable inputs. You can also implement a simple media mix model by using the PyMC library and applying Bayesian methods, as well as calibrate the model to improve its accuracy and predictive quality in marketing analysis.

In the next chapter, we will go through A/B testing, and how to use it to measure the impact of media on sales.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime