Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Analysis with R, Second Edition

You're reading from   Data Analysis with R, Second Edition A comprehensive guide to manipulating, analyzing, and visualizing data in R

Arrow left icon
Product type Paperback
Published in Mar 2018
Publisher Packt
ISBN-13 9781788393720
Length 570 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Tony Fischetti Tony Fischetti
Author Profile Icon Tony Fischetti
Tony Fischetti
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. RefresheR FREE CHAPTER 2. The Shape of Data 3. Describing Relationships 4. Probability 5. Using Data To Reason About The World 6. Testing Hypotheses 7. Bayesian Methods 8. The Bootstrap 9. Predicting Continuous Variables 10. Predicting Categorical Variables 11. Predicting Changes with Time 12. Sources of Data 13. Dealing with Missing Data 14. Dealing with Messy Data 15. Dealing with Large Data 16. Working with Popular R Packages 17. Reproducibility and Best Practices 18. Other Books You May Enjoy

ETS and the state space model


We've seen three methods so far: simple exponential smoothing for trend-less data, double exponential smoothing (also known as Holt's linear method) for a linear or damped trend component, and triple exponential smoothing (or Holt–Winters) for additive or multiplicative seasonality.

In a taxonomy of these methods first proposed in 1969 and expanded/refined in an important 2001 paper by Rob Hyndman (the author of the forecast package) et al., these methods can be nicely summarized in a table such as this:

Seasonal component

Trend component 

None

 Additive

 Multiplicative

None

 NN 

 NA

NM

Additive 

 AN 

 AA 

AM

Additive Damped

 DN

 DA 

DM

Multiplicative

 MN

 MA 

MM

 

This taxonomy encompasses all popular exponential smoothing methods including all the ones we've used so far (and many that we haven't). For example, the simple exponential smoothing method we used on the white noise series is NN, the models we tried on the climate change data (linear, and damped trend) were AN, and DN,...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image