Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Clojure Data Analysis Cookbook - Second Edition

You're reading from   Clojure Data Analysis Cookbook - Second Edition Dive into data analysis with Clojure through over 100 practical recipes for every stage of the analysis and collection process

Arrow left icon
Product type Paperback
Published in Jan 2015
Publisher
ISBN-13 9781784390297
Length 372 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Eric Richard Rochester Eric Richard Rochester
Author Profile Icon Eric Richard Rochester
Eric Richard Rochester
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Importing Data for Analysis FREE CHAPTER 2. Cleaning and Validating Data 3. Managing Complexity with Concurrent Programming 4. Improving Performance with Parallel Programming 5. Distributed Data Processing with Cascalog 6. Working with Incanter Datasets 7. Statistical Data Analysis with Incanter 8. Working with Mathematica and R 9. Clustering, Classifying, and Working with Weka 10. Working with Unstructured and Textual Data 11. Graphing in Incanter 12. Creating Charts for the Web Index

Parallelizing with reducers


In the last recipe, Combining function calls with reducers, we looked at the ability of reducers to compose multiple sequence processing functions into one function. This saves the effort of creating intermediate data structures.

Another feature of reducers is that they can automatically partition and parallelize the processing of tree-based data structures. This includes Clojure's native vectors and hash maps.

For this recipe, we'll continue the Monte Carlo simulation example that we started in the Partitioning Monte Carlo simulations for better pmap performance recipe. In this case, we'll write a version that uses reducers and see how it performs.

Getting ready

From the Partitioning Monte Carlo simulations for better pmap performance recipe, we'll use the same imports, as well as the rand-point, center-dist, and mc-pi functions. Along with these, we also need to require the reducers and Criterium libraries:

(require '[clojure.core.reducers :as r])
(use 'criterium...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime