Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Building Machine Learning Systems with Python

You're reading from   Building Machine Learning Systems with Python Expand your Python knowledge and learn all about machine-learning libraries in this user-friendly manual. ML is the next big breakthrough in technology and this book will give you the head-start you need.

Arrow left icon
Product type Paperback
Published in Jul 2013
Publisher Packt
ISBN-13 9781782161400
Length 290 pages
Edition 1st Edition
Languages
Arrow right icon
Toc

Table of Contents (20) Chapters Close

Building Machine Learning Systems with Python
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
1. Getting Started with Python Machine Learning FREE CHAPTER 2. Learning How to Classify with Real-world Examples 3. Clustering – Finding Related Posts 4. Topic Modeling 5. Classification – Detecting Poor Answers 6. Classification II – Sentiment Analysis 7. Regression – Recommendations 8. Regression – Recommendations Improved 9. Classification III – Music Genre Classification 10. Computer Vision – Pattern Recognition 11. Dimensionality Reduction 12. Big(ger) Data Where to Learn More about Machine Learning Index

Tweaking the parameters


So what about all the other parameters? Can we tweak them all to get better results?

Sure. We could, of course, tweak the number of clusters or play with the vectorizer's max_features parameter (you should try that!). Also, we could play with different cluster center initializations. There are also more exciting alternatives to KMeans itself. There are, for example, clustering approaches that also let you use different similarity measurements such as Cosine similarity, Pearson, or Jaccard. An exciting field for you to play.

But before you go there, you will have to define what you actually mean by "better". Scikit has a complete package dedicated only to this definition. The package is called sklearn.metrics and also contains a full range of different metrics to measure clustering quality. Maybe that should be the first place to go now, right into the sources of the metrics package.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime