Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Asynchronous Android
Asynchronous Android

Asynchronous Android: As an Android developer you know you're in a competitive marketplace. This book can give you the edge by guiding you through the concurrency constructs and proper use of AsyncTask to create smooth user interfaces.

eBook
€8.99 €25.99
Paperback
€32.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Asynchronous Android

Chapter 1. Building Responsive Android Applications

The Android operating system has, at its heart, a heavily modified Linux kernel designed to securely and efficiently run many process virtual machines on devices with relatively limited resources.

To build Android applications that run smoothly and responsively in these resource-constrained environments, we need to arm ourselves with an understanding of the options available, and how, when, and why to use them—this is the essence of this book.

However, before we do that, we'll briefly consider why we need to concern ourselves at all. We'll see how serious Google is about the efficiency of the platform, explore the Android process model and its implications for programmers and end users, and examine some of the measures that the Android team have put in place to protect users from apps that behave badly.

To conclude, we'll discuss the general approach used throughout the rest of the book to keep applications responsive using asynchronous programming and concurrency, and its associated challenges and benefits.

In this chapter, we will cover the following topics:

  • Introducing the Dalvik Virtual Machine

  • Memory sharing and the Zygote

  • Understanding the Android thread model

  • The main thread

  • Unresponsive apps and the ANR dialog

  • Maintaining responsiveness

  • Concurrency in Android

Introducing the Dalvik Virtual Machine


Android applications are typically programmed using the Java language, but the virtual machines in the Android stack are not instances of the Java Virtual Machine (JVM). Instead, the Java source is compiled to Java byte-code and translated into a Dalvik executable file (DEX) for execution on a Dalvik Virtual Machine (DVM).

It is no accident that Google chose Java as the primary language, allowing a vast pool of developer talent to quickly get to work on building apps, but why not simply run Android applications directly on a JVM?

Dalvik was created specifically for Android, and as such, was designed to operate in environments where memory, processor, and electrical power are limited, for example, mobile devices. Satisfying these design constraints resulted in a very different virtual machine than the typical JVM's that we know from desktop and server environments.

Dalvik goes to great lengths to improve the efficiency of the JVM, involving a range of optimizations to simplify and speed up interpretation and reduce the memory footprint of a running program. The most fundamental difference between the two VM architectures is that the JVM is a stack-based machine, whereas the DVM is register-based.

A stack-based virtual machine must transfer data from registers to the operand stack before manipulating them. In contrast, a register-based VM operates by directly using virtual registers. This increases the relative size of instructions because they must specify which registers to use, but reduces the number of instructions that must be executed to achieve the same result.

Dalvik's creators claim that the net result is in Dalvik's favour and that the DVM is on average around 30 percent more efficient than the JVM. Clearly, Google has gone to great lengths to squeeze every last drop of performance out of each mobile device to help developers build responsive applications!

Memory sharing and the Zygote

Another huge efficiency of the platform is brought about by the way in which a new DVM instance is created and managed.

A special process called the Zygote is launched when Android initially boots. The Zygote starts up a virtual machine, preloads the core libraries, and initializes various shared structures. It then waits for instructions by listening on a socket.

When a new Android application is launched, the Zygote receives a command to create a virtual machine to run the application on. It does this by forking its prewarmed VM process and creating a new child process that shares its memory with the parent, using a technique called Copy-On-Write. This has some fantastic benefits:

  • First, the virtual machine and core libraries are already loaded into the memory. Not having to read this significant chunk of data to initialize the virtual machine drastically reduces the startup overhead.

  • Second, the memory in which these core libraries and common structures reside is shared by the Zygote with all other applications, resulting in saving a lot of memory when the user is running multiple apps.

Understanding the Android thread model


Each forked application process runs independently and is scheduled frequent, small amounts of CPU time by the operating system. This time-slicing approach means that even a single-processor device can appear to be actively working in more than one application at the same time, when in fact, each application is taking very short turns on the CPU.

Within a process, there may be many threads of execution. Each thread is a separate sequential flow of control within the overall program—it executes its instructions in order, one after the other. These threads are also allocated slices of CPU time by the operating system.

While the application process is started by the system and prevented from directly interfering with data in the memory address space of other processes, threads may be started by application code and can communicate and share data with other threads within the same process.

The main thread

Within each DVM process, the system starts a number of threads to perform important duties such as garbage collection, but of particular importance to application developers is the single thread of execution known as the main or UI thread. By default, any code that we write in our applications will be executed by the main thread.

For example, when we write code in an onCreate method in the Activity class, it will be executed on the main thread. Likewise, when we attach listeners to user-interface components to handle taps and other user-input gestures, the listener callback executes on the main thread.

For apps that do little I/O or processing, this single thread model is fine. However, if we need to do CPU-intensive calculations, read or write files from permanent storage, or talk to a web service, any further events that arrive while we're doing this work will be blocked until we're finished.

Unresponsive apps and the ANR dialog

As you can imagine, if the main thread is busy with a heavy calculation or reading data from a network socket, it cannot immediately respond to user input such as a tap or swipe.

An app that doesn't respond quickly to user interaction will feel unresponsive—anything more than a couple of hundred milliseconds delay is noticeable. This is such a pernicious problem that the Android platform protects users from applications that do too much on the main thread.

Note

If an app does not respond to user input within 5 seconds, the user will see the Application Not Responding (ANR) dialog and be offered the option to quit the app.

Android works hard to synchronize user interface redraws with the hardware refresh rate. This means that it aims to redraw at 60 frames per second—that's just 16.67 ms per frame. If we do work on the main thread that takes anywhere near 16 ms, we risk affecting the frame rate, resulting in jank—stuttering animations, jerky scrolling, and so on.

At API level 16, Android introduced a new entity, the Choreographer, to oversee timing issues. It will start issuing dropped-frame warnings in the log if you drop more than 30 consecutive frames.

Ideally, of course, we don't want to drop a single frame. Jank, unresponsiveness, and especially the ANR, offer a very poor user experience and translate into bad reviews and an unpopular application. A rule to live by when building Android applications is: do not block the main thread!

Tip

Android provides a helpful strict mode setting in Developer Options on each device, which will flash the screen when applications perform long-running operations on the main thread.

Further protection was added to the platform in Honeycomb (API level 11) with the introduction of a new Exception class, NetworkOnMainThreadException, a subclass of RuntimeException that is thrown if the system detects network activity initiated on the main thread.

Maintaining responsiveness

Ideally then, we want to offload long-running operations from the main thread so that they can be handled in the background, and the main thread can continue to process user interface updates smoothly and respond in a timely fashion to user interaction.

For this to be useful, we must be able to coordinate work and safely pass data between cooperating threads—especially between background threads and the main thread.

We also want to execute many background tasks at the same time and take advantage of additional CPU cores to churn through heavy processing tasks quickly.

This simultaneous execution of separate code paths is known as concurrency.

Concurrency in Android

The low-level constructs of concurrency in Android are those provided by the Java language: java.lang.Thread, java.lang.Runnable, and the synchronized and volatile keywords.

Higher-level mechanisms introduced to Java 5 in the java.util.concurrent package, such as Executors, atomic wrapper classes, locking constructs, and concurrent collections, are also available for use in Android applications.

We can start new threads of execution in our Android applications just as we would in any other Java application, and the operating system will schedule some CPU time for those threads.

To do some work off the main thread, we can simply create a new instance of java.lang.Thread, override its run() method with the code we want it to execute, and invoke its start() method.

While starting new threads is easy, concurrency is actually a very difficult thing to do well. Concurrent software faces many issues that fall into the two broad categories: correctness (producing consistent and correct results) and liveness (making progress towards completion).

Correctness issues in concurrent programs

A common example of a correctness problem occurs when two threads need to modify the value of the same variable based on its current value. Let's imagine that we have an integer variable myInt with the current value of 2.

In order to increment myInt, we first need to read its current value and then add 1 to it. In a single threaded world, the two increments would happen in a strict sequence—we read the initial value 2, add 1 to it, set the new value back to the variable, then repeat the sequence. After the two increments, myInt holds the value 4.

In a multithreaded environment, we run into potential timing issues. It is possible that two threads trying to increment the variable would both read the same initial value (2), add 1 to it, and set the result (in both cases, 3) back to the variable.

Both threads have behaved correctly in their localized view of the world, but in terms of the overall program, we clearly have a correctness problem; 2 + 2 should not equal 3! This kind of timing issue is known as a race condition.

A common solution to correctness problems such as race conditions is mutual exclusion—preventing multiple threads from accessing certain resources at the same time. Typically, this is achieved by ensuring that threads acquire an exclusive lock before reading or updating shared data.

Liveness issues in concurrent programs

Liveness can be thought of as the ability of the application to do useful work and make progress towards goals. Liveness problems tend to be an unfortunate side effect of the solution to correctness problems. By locking access to data or system resources, it is possible to create bottlenecks where many threads are contending for access to a single lock, leading to potentially significant delays.

Worse, where multiple locks are used, it is possible to create a situation where no thread can make progress because each requires exclusive access to a lock that another thread currently owns—a situation known as a deadlock.

Android-specific concurrency issues

There are two additional problems facing developers of concurrent Android applications which are specific to Android.

The Activity lifecycle

Android applications are typically composed of one or more subclasses of android.app.Activity. An Activity instance has a very well-defined lifecycle that the system manages through the execution of lifecycle method callbacks, all of which are executed on the main thread.

An Activity instance that has been completed should be eligible for garbage collection, but background threads that refer to the Activity or part of its view hierarchy can prevent garbage collection and create a memory leak.

Similarly, it is easy to waste CPU cycles (and battery life) by continuing to do background work when the result can never be displayed because Activity has finished.

Finally, the Android platform is free at any time to kill processes that are not the user's current focus. This means that if we have long-running operations to complete, we need some way of letting the system know not to kill our process yet!

All of this complicates the do-not-block–the-main-thread rule because we need to worry about canceling background work in a timely fashion or decoupling it from the Activity lifecycle where appropriate.

Manipulating the user interface

The other Android-specific problem lies not in what you can do from the UI thread, but in what you cannot do:

Note

You cannot manipulate the user interface from any thread other than the main thread.

This is because the user-interface toolkit is not thread-safe, that is, accessing it from multiple threads may cause correctness problems. In fact, the user-interface toolkit protects itself from potential problems by actively denying access to user-interface components from threads other than the one that originally created those components.

The final challenge then lies in safely synchronizing background threads with the main thread so that the main thread can update the user interface with the results of the background work.

Android-specific concurrency constructs

The good news is that the Android platform provides specific constructs to address the general issues of concurrency, and to solve the specific problems presented by Android.

There are constructs that allow us to defer tasks to run later on the main thread, to communicate easily between cooperating threads, and to issue work to managed pools of worker threads and re-integrate the results.

There are solutions to the constraints of the Activity lifecycle both for medium-term operations that closely involve the user-interface and for longer-term work that must be completed even if the user leaves the application.

While some of these constructs were only introduced with newer releases of the Android platform, all are available through the support libraries and, with a few exceptions, the examples in this book target devices that run API level 7 (Android 2.1) and above.

The rest of this book discusses these Android-specific constructs and their usage and applications.

Summary


In this chapter, we learned that Google takes the efficiency of the Android platform very seriously. We also looked at the extraordinary lengths they go to in order to ensure a smooth user experience, evidencing the importance of building responsive applications.

We discussed the Android thread model and the measures that the platform may take to protect the user from apps that misbehave or are not sufficiently responsive.

Finally, we gained an overview of the general approach to building responsive apps through concurrency, and learned some of the issues faced by developers of concurrent software in general and Android applications in particular.

In the next chapter, we'll start to build responsive applications by applying the infamous AsyncTask instance to execute work in the background using pools of threads, and return progress updates and results to the main thread.

Left arrow icon Right arrow icon

Key benefits

  • Learn how to use Android's high-level concurrency constructs to keep your applications smooth and responsive
  • Leverage the full power of multi-core mobile CPUs to get more work done in less time
  • From quick calculations to scheduled downloads, each chapter explains the available mechanisms of asynchronous programming in detail

Description

With more than a million apps available from Google Play, it is more important than ever to build apps that stand out from the crowd. To be successful, apps must react quickly to user input, deliver results in a flash, and sync data in the background. The key to this is understanding the right way to implement asynchronous operations that work with the platform, instead of against it. Asynchronous Android is a practical book that guides you through the concurrency constructs provided by the Android platform, illustrating the applications, benefits, and pitfalls of each.Learn to use AsyncTask correctly to perform operations in the background, keeping user-interfaces running smoothly while avoiding treacherous memory leaks. Discover Handler, HandlerThread and Looper, the related and fundamental building blocks of asynchronous programming in Android. Escape from the constraints of the Activity lifecycle to load and cache data efficiently across your entire application with the Loader framework. Keep your data fresh with scheduled tasks, and understand how Services let your application continue to run in the background, even when the user is busy with something else.Asynchronous Android will help you to build well-behaved apps with smooth, responsive user-interfaces that delight users with speedy results and data that's always fresh, and keep the system happy and the battery charged by playing by the rules.

Who is this book for?

This book is for Android developers who want to learn about the advanced concepts of Android programming. No prior knowledge of concurrency and asynchronous programming is required. This book is also targeted towards Java experts who are new to Android.

What you will learn

  • Understand Android s process model and its implications on your applications
  • Exercise multithreading to build well-behaved Android applications that work with the platform
  • Apply and control concurrency to deliver results quickly and keep your applications responsive to user input
  • Discover Android-specific constructs that make asynchronous programming easy and efficient
  • Learn how to apply Android s concurrency constructs to build smooth and responsive applications

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Dec 24, 2013
Length: 146 pages
Edition : 1st
Language : English
ISBN-13 : 9781783286874
Category :
Languages :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Dec 24, 2013
Length: 146 pages
Edition : 1st
Language : English
ISBN-13 : 9781783286874
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 102.97
Creating Dynamic UI with Android Fragments
€32.99
Asynchronous Android
€32.99
Android Application Security Essentials
€36.99
Total 102.97 Stars icon
Banner background image

Table of Contents

7 Chapters
Building Responsive Android Applications Chevron down icon Chevron up icon
Staying Responsive with AsyncTask Chevron down icon Chevron up icon
Distributing Work with Handler and HandlerThread Chevron down icon Chevron up icon
Asynchronous I/O with Loader Chevron down icon Chevron up icon
Queuing Work with IntentService Chevron down icon Chevron up icon
Long-running Tasks with Service Chevron down icon Chevron up icon
Scheduling Work with AlarmManager Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.8
(4 Ratings)
5 star 75%
4 star 25%
3 star 0%
2 star 0%
1 star 0%
Brett Sep 28, 2014
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This is the best book to learn about the android framework's async features. There are other broader books on android that will give a chapter or two to the various pieces of the framework that are provided to help you run tasks asynchronously but they always seem to leave you wanting and wandering Google for a little more information. The author gives a thorough introduction to each of the tools provided by android to help its developers run tasks in parallel.I would recommend reading the entire book but it is organized nicely and each component gets its own chapter. If you are simply dealing with asynctasks and life cycle issues related to asynctasks you can open this book to that chapter and be happily on your way.Overall because of the importance that android places on not blocking an application's main thread means that every android developer should read this book to get the best performance and stability from their apps.
Amazon Verified review Amazon
Philip Arad Apr 07, 2014
Full star icon Full star icon Full star icon Full star icon Full star icon 5
With more than a million apps available from Google Play, Android has quickly become one of the most popular mobile operating system in use. Nowadays it is more important than ever to build apps that react quickly to user input, deliver results in a flash, and sync data in the background. Among the many things that contribute to a great user experience, responsiveness is the most important. Before making your app available to your users you must eliminate pauses and glitches while scrolling content, remove user interfaces that freeze while loading data from storage, add progress updates to let us know what's happening, and so on. In order to accomplish this task you must understand how to implement asynchronous operations that work with the Android platformTo address this problem efficiently, I recommend reading the book 'Asynchronous Android' from 'Packt Publishing' (see [...] )'Asynchronous Android' is a practical book that guides you through the concurrency constructs provided by the Android platform, illustrating the applications, benefits, and pitfalls of each.Reading the book, you will learn to use AsyncTask correctly to perform operations in the background, keeping user-interfaces running smoothly while avoiding treacherous memory leaks. Discover Handler, HandlerThread and Looper, the related and fundamental building blocks of asynchronous programming in Android. Escape from the constraints of the Activity lifecycle to load and cache data efficiently across your entire application with the Loader framework. Keep your data fresh with scheduled tasks, and understand how Services let your application continue to run in the background, even when the user is busy with something else.Asynchronous Android will help you to build well-behaved apps with smooth, responsive user-interfaces that delight users with speedy results and data that’s always fresh, and keep the system happy and the battery charged by playing by the rules.
Amazon Verified review Amazon
Liang Ma Sep 14, 2014
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Very concise, but informative and helpful. Well worth the money. Sincerely recommend this great book to all Android developers.
Amazon Verified review Amazon
R. Williams Mar 24, 2014
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
Give this book a little bit of credit for doing a decent job of covering the waterfront which is kind of vast. You can figure most of the same things out reading the documentation, but this is a good single source, for example, to figure out if you want to use Handlers or AsyncTasks, etc. Frankly, this is one of the best things books can provide when their topic is as wide ranging as an operating system, and the Android docs do not do this very well. The section on Services is really pretty good: there is discussion of IntentService vs. extending Service itself, and the rationale for doing services (which is actually quite broad).The negatives in this book is that the material is pretty thin. For instance, there is no in depth discussion of things like the looper. There is no discussion at all about testing. It all kind of has the feel of just 'if you're looking for x, go to door y.' Also, there are a few sections of the book that are completely absurd like the one where the author uses a file download as an example of something that ought be implemented as a service, then in the chapter summary he calls it the best example of a service. On earth? Huh??Just barely made 4 and that's because of the success in providing comparative summaries that the documentation lacks.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.