Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Advanced Deep Learning with Keras

You're reading from   Advanced Deep Learning with Keras Apply deep learning techniques, autoencoders, GANs, variational autoencoders, deep reinforcement learning, policy gradients, and more

Arrow left icon
Product type Paperback
Published in Oct 2018
Publisher Packt
ISBN-13 9781788629416
Length 368 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Rowel Atienza Rowel Atienza
Author Profile Icon Rowel Atienza
Rowel Atienza
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Introducing Advanced Deep Learning with Keras FREE CHAPTER 2. Deep Neural Networks 3. Autoencoders 4. Generative Adversarial Networks (GANs) 5. Improved GANs 6. Disentangled Representation GANs 7. Cross-Domain GANs 8. Variational Autoencoders (VAEs) 9. Deep Reinforcement Learning 10. Policy Gradient Methods Other Books You May Enjoy Index

Conclusion


In this chapter, we've discussed how to disentangle the latent representations of GANs. Earlier on in the chapter, we discussed how InfoGAN maximizes the mutual information in order to force the generator to learn disentangled latent vectors. In the MNIST dataset example, InfoGAN uses three representations and a noise code as inputs. The noise represents the rest of the attributes in the form of an entangled representation. StackedGAN approaches the problem in a different way. It uses a stack of encoder-GANs to learn how to synthesize fake features and images. The encoder is first trained to provide a dataset of features. Then, the encoder-GANs are trained jointly to learn how to use the noise code to control attributes of the generator output.

In the next chapter, we will embark on a new type of GAN that is able to generate new data in another domain. For example, given an image of a horse, the GAN can perform an automatic transformation to an image of a zebra. The interesting...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image