Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
TensorFlow 2 Reinforcement Learning Cookbook

You're reading from   TensorFlow 2 Reinforcement Learning Cookbook Over 50 recipes to help you build, train, and deploy learning agents for real-world applications

Arrow left icon
Product type Paperback
Published in Jan 2021
Publisher Packt
ISBN-13 9781838982546
Length 472 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Palanisamy Palanisamy
Author Profile Icon Palanisamy
Palanisamy
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Chapter 1: Developing Building Blocks for Deep Reinforcement Learning Using Tensorflow 2.x 2. Chapter 2: Implementing Value-Based, Policy-Based, and Actor-Critic Deep RL Algorithms FREE CHAPTER 3. Chapter 3: Implementing Advanced RL Algorithms 4. Chapter 4: Reinforcement Learning in the Real World – Building Cryptocurrency Trading Agents 5. Chapter 5: Reinforcement Learning in the Real World – Building Stock/Share Trading Agents 6. Chapter 6: Reinforcement Learning in the Real World – Building Intelligent Agents to Complete Your To-Dos 7. Chapter 7: Deploying Deep RL Agents to the Cloud 8. Chapter 8: Distributed Training for Accelerated Development of Deep RL Agents 9. Chapter 9: Deploying Deep RL Agents on Multiple Platforms 10. Other Books You May Enjoy

Implementing the Deep Deterministic Policy Gradient algorithm and DDPG agent

Deterministic Policy Gradient (DPG) is a type of Actor-Critic RL algorithm that uses two neural networks: one for estimating the action value function, and the other for estimating the optimal target policy. The Deep Deterministic Policy Gradient (DDPG) agent builds upon the idea of DPG and is quite efficient compared to vanilla Actor-Critic agents due to the use of deterministic action policies. By completing this recipe, you will have access to a powerful agent that can be trained efficiently in a variety of RL environments.

Getting ready

To complete this recipe, you will first need to activate the tf2rl-cookbook Conda Python virtual environment and pip install -r requirements.txt. If the following import statements run without issues, you are ready to get started!

import argparse
import os
import random
from collections import deque
from datetime import datetime
import gym
import numpy as np
import...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime