Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Scala Machine Learning Projects
Scala Machine Learning Projects

Scala Machine Learning Projects: Build real-world machine learning and deep learning projects with Scala

eBook
$9.99 $39.99
Paperback
$48.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Scala Machine Learning Projects

Analyzing and Predicting Telecommunication Churn

In this chapter, we will develop a machine learning (ML) project to analyze and predict whether a customer is likely to cancel the subscription to his telecommunication contract or not. In addition, we'll do some preliminary analysis of the data and take a closer look at what types of customer features are typically responsible for such a churn.

Widely used classification algorithms, such as decision trees, random forest, logistic regression, and Support Vector Machines (SVMs) will be used for analyzing and making the prediction. By the end, readers will be able to choose the best model to use for a production-ready environment.

In a nutshell, we will learn the following topics throughout this end-to-end project:

  • Why, and how, do we do churn prediction?
  • Logistic regression-based churn prediction
  • SVM-based churn prediction
  • ...

Why do we perform churn analysis, and how do we do it?

Customer churn is the loss of clients or customers (also known as customer attrition, customer turnover, or customer defection). This concept was initially used within the telecommunications industry when many subscribers switched to other service providers. However, it has become a very important issue in other areas of business, such as banks, internet service providers, insurance companies, and so on. Well, two of the primary reasons for churn are customer dissatisfaction and cheaper and/or better offers from the competition.

As you can see in Figure 1, there are four possible contracts with the customer in a business industry: contractual, non-contractual, voluntary, and involuntary. The full cost of customer churn includes both the lost revenue and the (tele-) marketing costs involved with replacing those customers...

Developing a churn analytics pipeline

In ML, we observe an algorithm's performance in two stages: learning and inference. The ultimate target of the learning stage is to prepare and describe the available data, also called the feature vector, which is used to train the model.

The learning stage is one of the most important stages, but it is also truly time-consuming. It involves preparing a list of vectors, also called feature vectors (vectors of numbers representing the value of each feature), from the training data after transformation so that we can feed them to the learning algorithms. On the other hand, training data also sometimes contains impure information that needs some pre-processing, such as cleaning.

Once we have the feature vectors, the next step in this stage is preparing (or writing/reusing) the learning algorithm. The next important step is training...

LR for churn prediction

LR is one of the most widely used classifiers to predict a binary response. It is a linear ML method, as described in Chapter 1, Analyzing Insurance Severity Claim. The loss function is the formulation given by the logistic loss:

For the LR model, the loss function is the logistic loss. For a binary classification problem, the algorithm outputs a binary LR model such that, for a given new data point, denoted by x, the model makes predictions by applying the logistic function:

In the preceding equation, z = WTX and if f(WTX)>0.5, the outcome is positive; otherwise, it is negative.

Note that the raw output of the LR model, f(z), has a probabilistic interpretation.

Note that compared to linear regression, logistic regression provides you with a higher classification accuracy. Moreover, it is a flexible way to regularize a model for custom adjustment...

SVM for churn prediction

SVM is also used widely for large-scale classification (that is, binary as well as multinomial) tasks. Besides, it is also a linear ML method, as described in Chapter 1, Analyzing Insurance Severity Claim. The linear SVM algorithm outputs an SVM model, where the loss function used by SVM can be defined using the hinge loss, as follows:

L(w;x,y):=max{0,1ywTx}

The linear SVMs in Spark are trained with an L2 regularization, by default. However, it also supports L1 regularization, by which the problem itself becomes a linear program.

Now, suppose we have a set of new data points x; the model makes predictions based on the value of wTx. By default, if wTx0, then the outcome is positive, and negative otherwise.

Now that we already know the SVMs working principle, let's start using the Spark-based implementation of SVM. Let's start...

DTs for churn prediction

DTs are commonly considered a supervised learning technique used for solving classification and regression tasks.

More technically, each branch in a DT represents a possible decision, occurrence, or reaction, in terms of statistical probability. Compared to naive Bayes, DTs are a far more robust classification technique. The reason is that at first, the DT splits the features into training and test sets. Then, it produces a good generalization to infer the predicted labels or classes. Most interestingly, a DT algorithm can handle both binary and multiclass classification problems.

For instance, in the following example figure, DTs learn from the admission data to approximate a sine curve with a set of if...else decision rules. The dataset contains the record of each student who applied for admission, say, to an American university. Each record contains...

Random Forest for churn prediction

As described in Chapter 1, Analyzing Insurance Severity Claim, Random Forest is an ensemble technique that takes a subset of observations and a subset of variables to build decision trees—that is, an ensemble of DTs. More technically, it builds several decision trees and integrates them together to get a more accurate and stable prediction.

Figure 7: Random forest and its assembling technique explained  

This is a direct consequence, since by maximum voting from a panel of independent juries, we get the final prediction better than the best jury (see the preceding figure). Now that we already know the working principle of RF, let's start using the Spark-based implementation of RF. Let's start by importing the required packages and libraries:

import org.apache.spark._
import org.apache.spark.sql.SparkSession
import org.apache...

Selecting the best model for deployment

From the preceding results, it can be seen that LR and SVM models have the same but higher false positive rate compared to Random Forest and DT. So we can say that DT and Random Forest have better accuracy overall in terms of true positive counts. Let's see the validity of the preceding statement with prediction distributions on pie charts for each model:

Now, it's worth mentioning that using random forest, we are actually getting high accuracy, but it's a very resource, as well as time-consuming job; the training, especially, takes a considerably longer time as compared to LR and SVM.

Therefore, if you don't have higher memory or computing power, it is recommended to increase the Java heap space prior to running this code to avoid OOM errors.

Finally, if you want to deploy the best model (that is, Random Forest in our...

Why do we perform churn analysis, and how do we do it?


Customer churn is the loss of clients or customers (also known as customer attrition, customer turnover, or customer defection). This concept was initially used within the telecommunications industry when many subscribers switched to other service providers. However, it has become a very important issue in other areas of business, such as banks, internet service providers, insurance companies, and so on. Well, two of the primary reasons for churn are customer dissatisfaction and cheaper and/or better offers from the competition.

As you can see in Figure 1, there are four possible contracts with the customer in a business industry: contractual, non-contractual, voluntary, and involuntary. The full cost of customer churn includes both the lost revenue and the (tele-) marketing costs involved with replacing those customers with new ones. However, this type of loss can cause a huge loss to a business. Think back to a decade ago, when Nokia...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Explore machine learning techniques with prominent open source Scala libraries such as Spark ML, H2O, MXNet, Zeppelin, and DeepLearning4j
  • Solve real-world machine learning problems by delving complex numerical computing with Scala functional programming in a scalable and faster way
  • Cover all key aspects such as collection, storing, processing, analyzing, and evaluation required to build and deploy machine models on computing clusters using Scala Play framework.

Description

Machine learning has had a huge impact on academia and industry by turning data into actionable information. Scala has seen a steady rise in adoption over the past few years, especially in the fields of data science and analytics. This book is for data scientists, data engineers, and deep learning enthusiasts who have a background in complex numerical computing and want to know more hands-on machine learning application development. If you're well versed in machine learning concepts and want to expand your knowledge by delving into the practical implementation of these concepts using the power of Scala, then this book is what you need! Through 11 end-to-end projects, you will be acquainted with popular machine learning libraries such as Spark ML, H2O, DeepLearning4j, and MXNet. At the end, you will be able to use numerical computing and functional programming to carry out complex numerical tasks to develop, build, and deploy research or commercial projects in a production-ready environment.

Who is this book for?

If you want to leverage the power of both Scala and Spark to make sense of Big Data, then this book is for you. If you are well versed with machine learning concepts and wants to expand your knowledge by delving into the practical implementation using the power of Scala, then this book is what you need! Strong understanding of Scala Programming language is recommended. Basic familiarity with machine Learning techniques will be more helpful.

What you will learn

  • Apply advanced regression techniques to boost the performance of predictive models
  • Use different classification algorithms for business analytics
  • Generate trading strategies for Bitcoin and stock trading using ensemble techniques
  • Train Deep Neural Networks (DNN) using H2O and Spark ML
  • Utilize NLP to build scalable machine learning models
  • Learn how to apply reinforcement learning algorithms such as Q-learning for developing ML application
  • Learn how to use autoencoders to develop a fraud detection application
  • Implement LSTM and CNN models using DeepLearning4j and MXNet

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jan 31, 2018
Length: 470 pages
Edition : 1st
Language : English
ISBN-13 : 9781788471473
Vendor :
Apache
Category :
Languages :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Jan 31, 2018
Length: 470 pages
Edition : 1st
Language : English
ISBN-13 : 9781788471473
Vendor :
Apache
Category :
Languages :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 169.97
Modern Scala Projects
$54.99
Scala Machine Learning Projects
$48.99
Scala for Machine Learning, Second Edition
$65.99
Total $ 169.97 Stars icon
Banner background image

Table of Contents

12 Chapters
Analyzing Insurance Severity Claims Chevron down icon Chevron up icon
Analyzing and Predicting Telecommunication Churn Chevron down icon Chevron up icon
High Frequency Bitcoin Price Prediction from Historical and Live Data Chevron down icon Chevron up icon
Population-Scale Clustering and Ethnicity Prediction Chevron down icon Chevron up icon
Topic Modeling - A Better Insight into Large-Scale Texts Chevron down icon Chevron up icon
Developing Model-based Movie Recommendation Engines Chevron down icon Chevron up icon
Options Trading Using Q-learning and Scala Play Framework Chevron down icon Chevron up icon
Clients Subscription Assessment for Bank Telemarketing using Deep Neural Networks Chevron down icon Chevron up icon
Fraud Analytics Using Autoencoders and Anomaly Detection Chevron down icon Chevron up icon
Human Activity Recognition using Recurrent Neural Networks Chevron down icon Chevron up icon
Image Classification using Convolutional Neural Networks Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.