Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Scala Data Analysis Cookbook (new)

You're reading from   Scala Data Analysis Cookbook (new) Navigate the world of data analysis, visualization, and machine learning with over 100 hands-on Scala recipes

Arrow left icon
Product type Paperback
Published in Oct 2015
Publisher
ISBN-13 9781784396749
Length 254 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Arun Manivannan Arun Manivannan
Author Profile Icon Arun Manivannan
Arun Manivannan
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface 1. Getting Started with Breeze FREE CHAPTER 2. Getting Started with Apache Spark DataFrames 3. Loading and Preparing Data – DataFrame 4. Data Visualization 5. Learning from Data 6. Scaling Up 7. Going Further Index

Loading JSON into DataFrames

JSON has become the most common text-based data representation format these days. In this recipe, we'll see how to load data represented as JSON into our DataFrame. To make it more interesting, let's have our JSON in HDFS instead of our local filesystem.

The Hadoop Distributed File System (HDFS) is a highly distributed filesystem that is both scalable and fault tolerant. It is a critical part of the Hadoop ecosystem and is inspired by the Google File System paper (http://research.google.com/archive/gfs.html). More details about the architecture and communication protocols on HDFS can be found at http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html.

How to do it…

In this recipe, we'll see three subrecipes:

  • How to create a schema-inferenced DataFrame from JSON using sqlContext.jsonFile
  • Alternatively, if we prefer to preprocess the input file before parsing it into JSON, we'll parse the input file as text and convert it into JSON using sqlContext...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image