Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Recurrent Neural Networks with Python Quick Start Guide

You're reading from   Recurrent Neural Networks with Python Quick Start Guide Sequential learning and language modeling with TensorFlow

Arrow left icon
Product type Paperback
Published in Nov 2018
Publisher Packt
ISBN-13 9781789132335
Length 122 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Simeon Kostadinov Simeon Kostadinov
Author Profile Icon Simeon Kostadinov
Simeon Kostadinov
Arrow right icon
View More author details
Toc

Preface

Deep learning (DL) is an increasingly popular topic that attracts the attention of the largest corporations as well as that of all kinds of developers. Over the past five years, this field has seen massive improvements that have ultimately led us to think of DL as a highly disruptive technology with immense potential. Virtual assistants, speech recognition, and language translation are just a few examples of the direct implementation of DL techniques. Compared to image recognition or object detection, these applications use sequential data, where the nature of every result depends upon that of the previous one. For example, you can't produce a meaningful translation of a sentence from English to Spanish without tracking the words from beginning to end. For these kinds of problems, a specific type of model is being used—the recurrent neural network (RNN). In this book, we will cover the basics of RNNs and focus on some practical implementations using the popular DL library TensorFlow. All examples are accompanied by in-depth explanations of the theory to help you understand the underlying concepts behind this powerful but slightly complex model. Reading this book will leave you confident in your knowledge of RNNs and give you a good head start in using this model for your own specific use cases.

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime