Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Recurrent Neural Networks with Python Quick Start Guide

You're reading from   Recurrent Neural Networks with Python Quick Start Guide Sequential learning and language modeling with TensorFlow

Arrow left icon
Product type Paperback
Published in Nov 2018
Publisher Packt
ISBN-13 9781789132335
Length 122 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Simeon Kostadinov Simeon Kostadinov
Author Profile Icon Simeon Kostadinov
Simeon Kostadinov
Arrow right icon
View More author details
Toc

Improving your RNN model

When working on a problem using RNN (or any other network), your process looks like this:

First, you come up with an idea for the model, its hyperparameters, the number of layers, how deep the network should be, and so on. Then the model is implemented and trained in order to produce some results. Finally, these results are assessed and the necessary modifications are made. It is rarely the case that you'll receive meaningful results from the first run. This cycle may occur multiple times until you are satisfied with the outcome. 

Considering this approach, one important question comes to mind: How can we change the model so the next cycle produces better results?

This question is tightly connected to your understanding of the network's results. Let's discuss that now. 

As you already know, in the beginning of each...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime