Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Deep Learning Cookbook

You're reading from   Python Deep Learning Cookbook Over 75 practical recipes on neural network modeling, reinforcement learning, and transfer learning using Python

Arrow left icon
Product type Paperback
Published in Oct 2017
Publisher Packt
ISBN-13 9781787125193
Length 330 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Indra den Bakker Indra den Bakker
Author Profile Icon Indra den Bakker
Indra den Bakker
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Programming Environments, GPU Computing, Cloud Solutions, and Deep Learning Frameworks 2. Feed-Forward Neural Networks FREE CHAPTER 3. Convolutional Neural Networks 4. Recurrent Neural Networks 5. Reinforcement Learning 6. Generative Adversarial Networks 7. Computer Vision 8. Natural Language Processing 9. Speech Recognition and Video Analysis 10. Time Series and Structured Data 11. Game Playing Agents and Robotics 12. Hyperparameter Selection, Tuning, and Neural Network Learning 13. Network Internals 14. Pretrained Models

Experimenting with different types of initialization


For CNNs, the of the weights and biases can be extremely important. For very deep neural networks, some initialization techniques may lead to diminishing gradients caused by the magnitude of the gradient in the final layers. In the following recipe, we will show you how to use different initializations for a well-known network and demonstrate the difference in performance. By picking the right initialization, one can speed up convergence of a network. In the following recipe, we first initialize the weights and bias of the network with the popular Gaussian noise, with the mean equal to zero and a standard deviation of 0.01. Afterwards, we use Xavier initialization, both normal and uniform, and some other popular initialization distributions.

How to do it...

  1. Import all necessary libraries as follows:
import glob
import numpy as np
import cv2
from matplotlib import pyplot as plt
from sklearn.model_selection import train_test_split

from keras...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime