Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
OpenCV 3 Computer Vision with Python Cookbook

You're reading from   OpenCV 3 Computer Vision with Python Cookbook Leverage the power of OpenCV 3 and Python to build computer vision applications

Arrow left icon
Product type Paperback
Published in Mar 2018
Publisher Packt
ISBN-13 9781788474443
Length 306 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Aleksandr Rybnikov Aleksandr Rybnikov
Author Profile Icon Aleksandr Rybnikov
Aleksandr Rybnikov
Aleksei Spizhevoi Aleksei Spizhevoi
Author Profile Icon Aleksei Spizhevoi
Aleksei Spizhevoi
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. I/O and GUI FREE CHAPTER 2. Matrices, Colors, and Filters 3. Contours and Segmentation 4. Object Detection and Machine Learning 5. Deep Learning 6. Linear Algebra 7. Detectors and Descriptors 8. Image and Video Processing 9. Multiple View Geometry 10. Other Books You May Enjoy

Reading images from files

In this recipe, we will learn how to read images from files. OpenCV supports reading images in different formats, such as PNG, JPEG, and TIFF. Let's write a program that takes the path to an image as its first parameter, reads the image, and prints its shape and size.

Getting ready

You need to have OpenCV 3.x installed with Python API support.

How to do it...

For this recipe, you need to perform the following steps:

  1. You can easily read an image with the cv2.imread function, which takes path to image and optional flags:
import argparse
import cv2
parser = argparse.ArgumentParser()
parser.add_argument('--path', default='../data/Lena.png', help='Image path.')
params = parser.parse_args()
img = cv2.imread(params.path)
  1. Sometimes it's useful to check whether the image was successfully loaded or not:
assert img is not None  # check if the image was successfully loaded
print('read {}'.format(params.path))
print('shape:', img.shape)
print('dtype:', img.dtype)
  1. Load the image and convert it to grayscale, even if it had many color channels originally:
img = cv2.imread(params.path, cv2.IMREAD_GRAYSCALE)
assert img is not None print('read {} as grayscale'.format(params.path)) print('shape:', img.shape) print('dtype:', img.dtype)

How it works...

The loaded image is represented as a NumPy array. The same representation is used in OpenCV for matrices. NumPy arrays have such properties as shape, which is an image's size and number of color channels, and dtype, which is the underlying data type (for example, uint8 or float32). Note that OpenCV loads images in BGR, not RGB, format.

The shape tuple in this case should be interpreted as follows: image height, image width, color channels count.

The cv.imread function also supports optional flags, where users can specify whether conversion to uint8 type should be performed, and whether the image is grayscale or color.

Having run the code with the default parameters, you should see the following output:

read ../data/Lena.png
shape: (512, 512, 3)
dtype: uint8

read ../data/Lena.png as grayscale
shape: (512, 512)
dtype: uint8
You have been reading a chapter from
OpenCV 3 Computer Vision with Python Cookbook
Published in: Mar 2018
Publisher: Packt
ISBN-13: 9781788474443
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime