Generating single-step forecast baselines
We reviewed and generated a few baseline models back in Chapter 4, Setting a Strong Baseline Forecast. But there is a small issue – the prediction horizon. In Chapter 6, Feature Engineering for Time Series Forecasting, we talked about how the machine learning model can only predict one target at a time and that we are sticking with a single-step forecast. The baselines we generated earlier were not single-step, but multi-step. Generating a single-step forecast for baseline algorithms such as ARIMA or ETS requires us to fit on history, predict one step ahead, and then fit again using one more day. Predicting in such an iterative fashion for our test or validation period requires us to do this iteration ~1,440 times (48 data points a day for 30 days) and repeat this for all the households in our selected dataset (150, in our case). This would take quite a long time to compute.
We have chosen the naïve method and seasonal naï...