Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Modern Computer Vision with PyTorch

You're reading from   Modern Computer Vision with PyTorch A practical roadmap from deep learning fundamentals to advanced applications and Generative AI

Arrow left icon
Product type Paperback
Published in Jun 2024
Publisher Packt
ISBN-13 9781803231334
Length 746 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
V Kishore Ayyadevara V Kishore Ayyadevara
Author Profile Icon V Kishore Ayyadevara
V Kishore Ayyadevara
Yeshwanth Reddy Yeshwanth Reddy
Author Profile Icon Yeshwanth Reddy
Yeshwanth Reddy
Arrow right icon
View More author details
Toc

Table of Contents (26) Chapters Close

Preface 1. Section 1: Fundamentals of Deep Learning for Computer Vision
2. Artificial Neural Network Fundamentals FREE CHAPTER 3. PyTorch Fundamentals 4. Building a Deep Neural Network with PyTorch 5. Section 2: Object Classification and Detection
6. Introducing Convolutional Neural Networks 7. Transfer Learning for Image Classification 8. Practical Aspects of Image Classification 9. Basics of Object Detection 10. Advanced Object Detection 11. Image Segmentation 12. Applications of Object Detection and Segmentation 13. Section 3: Image Manipulation
14. Autoencoders and Image Manipulation 15. Image Generation Using GANs 16. Advanced GANs to Manipulate Images 17. Section 4: Combining Computer Vision with Other Techniques
18. Combining Computer Vision and Reinforcement Learning 19. Combining Computer Vision and NLP Techniques 20. Foundation Models in Computer Vision 21. Applications of Stable Diffusion 22. Moving a Model to Production 23. Other Books You May Enjoy
24. Index
Appendix

Understanding the impact of varying the batch size

In the previous sections, 32 data points were considered per batch in the training dataset. This resulted in a greater number of weight updates per epoch, as there were 1,875 weight updates per epoch (60,000/32 is nearly equal to 1,875, where 60,000 is the number of training images).

Furthermore, we did not consider the model’s performance on an unseen dataset (validation dataset). We will explore this in this section.

In this section, we will compare the following:

  • The loss and accuracy values of the training and validation data when the training batch size is 32
  • The loss and accuracy values of the training and validation data when the training batch size is 10,000

Now that we have brought validation data into the picture, let’s rerun the code provided in the Building a neural network section with additional code to generate validation data, as well as to calculate the loss and accuracy...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime