Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Mastering Predictive Analytics with scikit-learn and TensorFlow
Mastering Predictive Analytics with scikit-learn and TensorFlow

Mastering Predictive Analytics with scikit-learn and TensorFlow: Implement machine learning techniques to build advanced predictive models using Python

Arrow left icon
Profile Icon Alvaro Fuentes
Arrow right icon
$19.99 per month
Paperback Sep 2018 154 pages 1st Edition
eBook
$9.99 $25.99
Paperback
$32.99
Subscription
Free Trial
Renews at $19.99p/m
Arrow left icon
Profile Icon Alvaro Fuentes
Arrow right icon
$19.99 per month
Paperback Sep 2018 154 pages 1st Edition
eBook
$9.99 $25.99
Paperback
$32.99
Subscription
Free Trial
Renews at $19.99p/m
eBook
$9.99 $25.99
Paperback
$32.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Mastering Predictive Analytics with scikit-learn and TensorFlow

Cross-validation and Parameter Tuning

Predictive analytics is about making predictions for unknown events. We use it to produce models that generalize data. For this, we use a technique called cross-validation.

Cross-validation is a validation technique for assessing the result of a statistical analysis that generalizes to an independent dataset that gives a measure of out-of-sample accuracy. It achieves the task by averaging over several random partitions of the data into training and test samples. It is often used for hyperparameter tuning by doing cross-validation for several possible values of a parameter and choosing the parameter value that gives the lowest cross-validation average error.

There are two kinds of cross-validation: exhaustive and non-exhaustive. K-fold is an example of non-exhaustive cross-validation. It is a technique for getting a more accurate assessment...

Holdout cross-validation

In holdout cross-validation, we hold out a percentage of observations and so we get two datasets. One is called the training dataset and the other is called the testing dataset. Here, we use the testing dataset to calculate our evaluation metrics, and the rest of the data is used to train the model. This is the process of holdout cross-validation.

The main advantage of holdout cross-validation is that it is very easy to implement and it is a very intuitive method of cross-validation.

The problem with this kind of cross-validation is that it provides a single estimate for the evaluation metric of the model. This is problematic because some models rely on randomness. So in principle, it is possible that the evaluation metrics calculated on the test sometimes they will vary a lot because of random chance. So the main problem with holdout cross-validation...

K-fold cross-validation

In k-fold cross-validation, we basically do holdout cross-validation many times. So in k-fold cross-validation, we partition the dataset into k equal-sized samples. Of these many k subsamples, a single subsample is retained as the validation data for testing the model, and the remaining k−1 subsamples are used as training data. This cross-validation process is then repeated k times, with each of the k subsamples used exactly once as the validation data. The k results can then be averaged to produce a single estimation.

The following screenshot shows a visual example of 5-fold cross-validation (k=5) :

Here, we see that our dataset gets divided into five parts. We use the first part for testing and the rest for training.

The following are the steps we follow in the 5-fold cross-validation method:

  1. We get the first estimation of our evaluation metrics...

Comparing models with k-fold cross-validation

As k-fold cross-validation method proved to be a better method, it is more suitable for comparing models. The reason behind this is that k-fold cross-validation gives much estimation of the evaluation metrics, and on averaging these estimations, we get a better assessment of model performance.

The following shows the code used to import libraries for comparing models:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
%matplotlib inline

After importing libraries, we'll import the diamond dataset. The following shows the code used to prepare this diamond dataset:

# importing data
data_path= '../data/diamonds.csv'
diamonds = pd.read_csv(data_path)
diamonds = pd.concat([diamonds, pd.get_dummies(diamonds['cut'], prefix='cut', drop_first=True)],axis=1)
diamonds = pd.concat([diamonds, pd.get_dummies...

Introduction to hyperparameter tuning

The method used to choose the best estimators for a particular dataset or choosing the best values for all hyperparameters is called hyperparameter tuning. Hyperparameters are parameters that are not directly learned within estimators. Their value is decided by the modelers.

For example, in the RandomForestClassifier object, there are a lot of hyperparameters, such as n_estimators, max_depth, max_features, and min_samples_split. Modelers decide the values for these hyperparameters.

Exhaustive grid search

One of the most important and generally-used methods for performing hyperparameter tuning is called the exhaustive grid search. This is a brute-force approach because it tries all of...

Summary

In this chapter, we learned about cross-validation, and different methods of cross-validation, including holdout cross-validation and k-fold cross-validation. We came to know that k-fold cross-validation is nothing but doing holdout cross-validation many times. We implemented k-fold cross-validation using the diamond dataset. We also compared different models using k-fold cross-validation and found the best-performing model, which was the random forest model.

Then, we discussed hyperparameter tuning. We came across the exhaustive grid-search method, which is used to perform hyperparameter tuning. We implemented hyperparameter tuning again using the diamond dataset. We also compared tuned and untuned models, and found that tuned parameters make the model perform better than untuned ones.

In the next chapter, we will study feature selection methods, dimensionality reduction...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Use ensemble methods to improve the performance of predictive analytics models
  • Implement feature selection, dimensionality reduction, and cross-validation techniques
  • Develop neural network models and master the basics of deep learning

Description

Python is a programming language that provides a wide range of features that can be used in the field of data science. Mastering Predictive Analytics with scikit-learn and TensorFlow covers various implementations of ensemble methods, how they are used with real-world datasets, and how they improve prediction accuracy in classification and regression problems. This book starts with ensemble methods and their features. You will see that scikit-learn provides tools for choosing hyperparameters for models. As you make your way through the book, you will cover the nitty-gritty of predictive analytics and explore its features and characteristics. You will also be introduced to artificial neural networks and TensorFlow, and how it is used to create neural networks. In the final chapter, you will explore factors such as computational power, along with improvement methods and software enhancements for efficient predictive analytics. By the end of this book, you will be well-versed in using deep neural networks to solve common problems in big data analysis.

Who is this book for?

Mastering Predictive Analytics with scikit-learn and TensorFlow is for data analysts, software engineers, and machine learning developers who are interested in implementing advanced predictive analytics using Python. Business intelligence experts will also find this book indispensable as it will teach them how to progress from basic predictive models to building advanced models and producing more accurate predictions. Prior knowledge of Python and familiarity with predictive analytics concepts are assumed.

What you will learn

  • Use ensemble algorithms to obtain accurate predictions
  • Apply dimensionality reduction techniques to combine features and build better models
  • Choose the optimal hyperparameters using cross-validation
  • Implement different techniques to solve current challenges in the predictive analytics domain
  • Understand various elements of deep neural network (DNN) models
  • Implement neural networks to solve both classification and regression problems

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Sep 29, 2018
Length: 154 pages
Edition : 1st
Language : English
ISBN-13 : 9781789617740
Category :
Languages :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Sep 29, 2018
Length: 154 pages
Edition : 1st
Language : English
ISBN-13 : 9781789617740
Category :
Languages :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 114.97
Ensemble Machine Learning Cookbook
$48.99
Mastering Predictive Analytics with scikit-learn and TensorFlow
$32.99
Machine Learning with scikit-learn Quick Start Guide
$32.99
Total $ 114.97 Stars icon
Banner background image

Table of Contents

6 Chapters
Ensemble Methods for Regression and Classification Chevron down icon Chevron up icon
Cross-validation and Parameter Tuning Chevron down icon Chevron up icon
Working with Features Chevron down icon Chevron up icon
Introduction to Artificial Neural Networks and TensorFlow Chevron down icon Chevron up icon
Predictive Analytics with TensorFlow and Deep Neural Networks Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.