Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Object-Oriented Python

You're reading from   Mastering Object-Oriented Python Build powerful applications with reusable code using OOP design patterns and Python 3.7

Arrow left icon
Product type Paperback
Published in Jun 2019
Publisher Packt
ISBN-13 9781789531367
Length 770 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Steven F. Lott Steven F. Lott
Author Profile Icon Steven F. Lott
Steven F. Lott
Arrow right icon
View More author details
Toc

Table of Contents (25) Chapters Close

Preface 1. Section 1: Tighter Integration Via Special Methods FREE CHAPTER
2. Preliminaries, Tools, and Techniques 3. The __init__() Method 4. Integrating Seamlessly - Basic Special Methods 5. Attribute Access, Properties, and Descriptors 6. The ABCs of Consistent Design 7. Using Callables and Contexts 8. Creating Containers and Collections 9. Creating Numbers 10. Decorators and Mixins - Cross-Cutting Aspects 11. Section 2: Object Serialization and Persistence
12. Serializing and Saving - JSON, YAML, Pickle, CSV, and XML 13. Storing and Retrieving Objects via Shelve 14. Storing and Retrieving Objects via SQLite 15. Transmitting and Sharing Objects 16. Configuration Files and Persistence 17. Section 3: Object-Oriented Testing and Debugging
18. Design Principles and Patterns 19. The Logging and Warning Modules 20. Designing for Testability 21. Coping with the Command Line 22. Module and Package Design 23. Quality and Documentation 24. Other Books You May Enjoy

Creating indexes to improve efficiency

One of the rules of efficiency is to avoid search. Our previous example of using an iterator over the keys in a shelf is inefficient. To state that more strongly, use of search defines an inefficient application. We'll emphasize this.

Brute-force search is perhaps the worst possible way to work with data. Try to design indexes based on subsets or key mappings to improve performance.

To avoid searching, we need to create indexes that list the items users are most likely to want. This saves you reading through the entire shelf to find an item or subset of items. A shelf index can't reference Python objects, as that would change the granularity at which the objects are stored. An index will only list key values, a separate retrieval is done to get the object in question. This makes navigation among objects indirect but still much faster...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image