Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Machine Learning Algorithms

You're reading from   Mastering Machine Learning Algorithms Expert techniques to implement popular machine learning algorithms and fine-tune your models

Arrow left icon
Product type Paperback
Published in May 2018
Publisher Packt
ISBN-13 9781788621113
Length 576 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Bonaccorso Giuseppe Bonaccorso
Author Profile Icon Giuseppe Bonaccorso
Giuseppe Bonaccorso
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Machine Learning Model Fundamentals 2. Introduction to Semi-Supervised Learning FREE CHAPTER 3. Graph-Based Semi-Supervised Learning 4. Bayesian Networks and Hidden Markov Models 5. EM Algorithm and Applications 6. Hebbian Learning and Self-Organizing Maps 7. Clustering Algorithms 8. Ensemble Learning 9. Neural Networks for Machine Learning 10. Advanced Neural Models 11. Autoencoders 12. Generative Adversarial Networks 13. Deep Belief Networks 14. Introduction to Reinforcement Learning 15. Advanced Policy Estimation Algorithms 16. Other Books You May Enjoy

Recurrent networks


All the models that we have analyzed until now have a common feature. Once the training process is completed, the weights are frozen and the output depends only on the input sample. Clearly, this is the expected behavior of a classifier, but there are many scenarios where a prediction must take into account the history of the input values. A time series is a classic example. Let's suppose that we need to predict the temperature for the next week. If we try to use only the last known x(t) value and an MLP trained to predict x(t+1), it's impossible to take into account temporal conditions like the season, the history of the season over the years, the position in the season, and so on. The regressor will be able to associate the output that yields the minimum average error, but in real-life situations, this isn't enough. The only reasonable way to solve this problem is to define a new architecture for the artificial neuron, to provide it with a memory. This concept is shown...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime