Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Clojure Data Analysis

You're reading from   Mastering Clojure Data Analysis If you'd like to apply your Clojure skills to performing data analysis, this is the book for you. The example based approach aids fast learning and covers basic to advanced topics. Get deeper into your data.

Arrow left icon
Product type Paperback
Published in May 2014
Publisher
ISBN-13 9781783284139
Length 340 pages
Edition Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Eric Richard Rochester Eric Richard Rochester
Author Profile Icon Eric Richard Rochester
Eric Richard Rochester
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Mastering Clojure Data Analysis
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Network Analysis – The Six Degrees of Kevin Bacon FREE CHAPTER 2. GIS Analysis – Mapping Climate Change 3. Topic Modeling – Changing Concerns in the State of the Union Addresses 4. Classifying UFO Sightings 5. Benford's Law – Detecting Natural Progressions of Numbers 6. Sentiment Analysis – Categorizing Hotel Reviews 7. Null Hypothesis Tests – Analyzing Crime Data 8. A/B Testing – Statistical Experiments for the Web 9. Analyzing Social Data Participation 10. Modeling Stock Data Index

Getting prepared with data


As usual, now we need to clean up the data and put it into a shape that we can work with. The news article dataset particularly will require some attention, so let's turn our attention to it first.

Working with news articles

The OANC is published in an XML format that includes a lot of information and annotations about the data. Specifically, this marks off:

  • Sections and chapters

  • Sentences

  • Words with part-of-speech lemma

  • Noun chunks

  • Verb chunks

  • Named entities

However, we want the option to use raw text later when the system is actually being used. Because of that, we will ignore the annotations and just extract the raw tokens. In fact, all we're really interested in is each document's text—either as a raw string or a feature vector—and the date it was published. Let's create a record type for this.

We'll put this into the types.clj file in src/financial/. Put this simple namespace header into the file:

(ns financial.types)

This data record will be similarly simple. It can...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime