Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning for Streaming Data with Python

You're reading from   Machine Learning for Streaming Data with Python Rapidly build practical online machine learning solutions using River and other top key frameworks

Arrow left icon
Product type Paperback
Published in Jul 2022
Publisher Packt
ISBN-13 9781803248363
Length 258 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Joos Korstanje Joos Korstanje
Author Profile Icon Joos Korstanje
Joos Korstanje
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1: Introduction and Core Concepts of Streaming Data
2. Chapter 1: An Introduction to Streaming Data FREE CHAPTER 3. Chapter 2: Architectures for Streaming and Real-Time Machine Learning 4. Chapter 3: Data Analysis on Streaming Data 5. Part 2: Exploring Use Cases for Data Streaming
6. Chapter 4: Online Learning with River 7. Chapter 5: Online Anomaly Detection 8. Chapter 6: Online Classification 9. Chapter 7: Online Regression 10. Chapter 8: Reinforcement Learning 11. Part 3: Advanced Concepts and Best Practices around Streaming Data
12. Chapter 9: Drift and Drift Detection 13. Chapter 10: Feature Transformation and Scaling 14. Chapter 11: Catastrophic Forgetting 15. Chapter 12: Conclusion and Best Practices 16. Other Books You May Enjoy

Using reinforcement learning for streaming data

As discussed throughout earlier chapters, the challenge of building models on streaming data is to find models that are able to learn incrementally and that are able to adapt in the case of model drift or data drift.

Reinforcement learning is a potential candidate that could respond well to those two challenges. After all, reinforcement learning has a feedback loop that allows it to change policy when many mistakes are made. It is therefore able to adapt itself in the event of changes.

Reinforcement learning can be seen as a subcase of online learning. At the same time, the second specificity of reinforcement learning is its focus on learning actions, whereas regular online models are focused on making accurate predictions.

The split between the two fields is present in practice in the types of use cases and domains of application, but many streaming use cases have the potential to benefit from reinforcement learning and it is...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image