Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning Engineering with Python

You're reading from   Machine Learning Engineering with Python Manage the production life cycle of machine learning models using MLOps with practical examples

Arrow left icon
Product type Paperback
Published in Nov 2021
Publisher Packt
ISBN-13 9781801079259
Length 276 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Andrew P. McMahon Andrew P. McMahon
Author Profile Icon Andrew P. McMahon
Andrew P. McMahon
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Section 1: What Is ML Engineering?
2. Chapter 1: Introduction to ML Engineering FREE CHAPTER 3. Chapter 2: The Machine Learning Development Process 4. Section 2: ML Development and Deployment
5. Chapter 3: From Model to Model Factory 6. Chapter 4: Packaging Up 7. Chapter 5: Deployment Patterns and Tools 8. Chapter 6: Scaling Up 9. Section 3: End-to-End Examples
10. Chapter 7: Building an Example ML Microservice 11. Chapter 8: Building an Extract Transform Machine Learning Use Case 12. Other Books You May Enjoy

Packaging your code

In some ways, it is interesting that Python has taken the world by storm. It is dynamically typed and non-compiled, so it can be quite different to work with compared to Java or C++. This particularly comes to the fore when we think about packaging our Python solutions. For a compiled language, the main target is to produce a compiled artifact that can run on the chosen environment, a Java jar for example. Python requires that the environment you run in has an appropriate Python interpreter and the ability to install the libraries and packages you need. There is also no single compiled artifact created, so you often need to deploy your whole code base as is.

Despite this, Python has indeed taken the world by storm, especially for ML. As we are ML engineers thinking about taking models to production, we would be remiss to not understand how to package and share Python code in a way that helps others to avoid repetition, to trust in the solution, and to be able...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime