Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning SciPy for Numerical and Scientific Computing Second Edition

You're reading from   Learning SciPy for Numerical and Scientific Computing Second Edition Quick solutions to complex numerical problems in physics, applied mathematics, and science with SciPy

Arrow left icon
Product type Paperback
Published in Feb 2015
Publisher Packt
ISBN-13 9781783987702
Length 188 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Toc

Distribution fitting


In Timothy Sturm's example, we claim that the histogram of some data seemed to fit a normal distribution. SciPy has a few routines to help us approximate the best distribution to a random variable, together with the parameters that best approximate this fit. For example, for the data in that problem, the mean and standard deviation of the normal distribution that realizes the best fit can be found in the following way:

>>> from scipy.stats import norm     # Gaussian distribution
>>> mean,std=norm.fit(dataDiff)

We can now plot the (normed) histogram of the data, together with the computed probability density function, as follows:

>>> plt.hist(dataDiff, normed=1)
>>> x=numpy.linspace(dataDiff.min(),dataDiff.max(),1000)
>>> pdf=norm.pdf(x,mean,std)
>>> plt.plot(x,pdf)
>>> plt.show()

We will obtain the following graph showing the maximum likelihood estimate to the normal distribution that best fits dataDiff:

We...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime