Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning Cypher

You're reading from   Learning Cypher Write powerful and efficient queries for Neo4j with Cypher, its official query language

Arrow left icon
Product type Paperback
Published in May 2014
Publisher
ISBN-13 9781783287758
Length 162 pages
Edition Edition
Arrow right icon
Author (1):
Arrow left icon
Onofrio Panzarino Onofrio Panzarino
Author Profile Icon Onofrio Panzarino
Onofrio Panzarino
Arrow right icon
View More author details
Toc

HR management tool – an example


For the first example in this book, I chose an enterprise application, such as human resource (HR) management, because I think Neo4j is a great persistence tool for enterprise applications. In fact, they are famous for having very complex schemas with a lot of relationships and entities and requirements that often change during the life of the software; therefore, the queries are also complicated and prone to change frequently.

Tip

Downloading the example code

You can download the example code files for all Packt books you have purchased from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

In our human resources tool, we have two kinds of nodes: employees and cost centers. So, we can define the two labels with the following code:

public enum HrLabels implements Label {
  Employee,
  CostCenter
}

Labels are usually defined using an enumeration, but Neo4j just requires those labels that implement the Label interface.

Tip

Labels are a very useful feature introduced in Neo4j 2.0 that allow us to label a node and make it easier to find them later. A node can have one or more labels, so you can express complex domain concepts. Labels can be indexed to improve the performance of a search as well.

We have three types of relationships:

  • Employees that belong to cost centers

  • Employees that report to other employees

  • Employees that can be managers of a cost center

So, we have to define the relationships. This is usually done using the enum function, as shown in the following code snippet:

public enum EmployeeRelationship implements RelationshipType {
   REPORTS_TO,
   BELONGS_TO,
   MANAGER_OF;

   public static final String FROM = "from";
}

The FROM constant represents the name of a property. We will use it to store the start date of the validity of the relationship. Clearly, a real-world HR application would have a lot of relationships and properties; here we have just a subset.

Creating nodes and relationships using the Java API

The next step is to fill in the database. First of all, to work with Neo4j using the Java API, we always need a transaction created from the GraphDatabaseService class. While building with Java 7, you can use the following syntax:

import org.neo4j.graphdb.Transaction;
import org.neo4j.graphdb.GraphDatabaseService;

// ...
try (Transaction tx = graphDb.beginTx()) {

   // work with the graph...
   tx.success();
}

The first line in the preceding code creates a transaction named tx. The call to success marks the transaction successful; every change will be committed once the transaction is closed. If an exception is thrown from inside the try statement, the transaction automatically ends with a rollback. When you use Java 6, the code is a little longer because you have to close the transaction explicitly within a finally clause, as shown in the following code:

Transaction tx = graphDb.beginTx();
try {
   // work with the graph...
   tx.success();
} finally {
  tx.close();
}

Now, in our application, cost centers are identified only by their code, while employees can have the following properties:

  • Name

  • Surname

  • Middle name

Our relationships (REPORTS_TO, BELONGS_TO, and MANAGER_OF) can have a property (From) that specifies the dates of validity. The following code creates some examples of nodes and the relationships between them, and then sets the property values of nodes and some relationships:

import java.util.GregorianCalendar;
import org.neo4j.graphdb.GraphDatabaseService;
import org.neo4j.graphdb.Node;
import org.neo4j.graphdb.Transaction;
import org.neo4j.graphdb.factory.GraphDatabaseFactory;

public class DatabaseSetup {

/**
* Properties of a cost center
*/
public static class CostCenter {
    public static final String CODE = "code";
}

/**
* Properties of an employee
*/
public static class Employee {
    public static final String NAME = "name";
    public static final String MIDDLE_NAME = "middleName";
    public static final String SURNAME = "surname";
}

Public static void setup(GraphDatabaseService graphDb) {

        try (Transaction tx = graphDb.beginTx()) {
            // set up of center costs
            Node cc1 = graphDb.createNode(HrLabels.CostCenter);
            cc1.setProperty(CostCenter.CODE, "CC1");

            Node cc2 = graphDb.createNode(HrLabels.CostCenter);
            cc2.setProperty(CostCenter. CODE, "CC2");

            Node davies = graphDb.createNode(HrLabels.Employee);
            davies.setProperty(Employee.NAME, "Nathan");
            davies.setProperty(Employee.SURNAME, "Davies");

            Node taylor = graphDb.createNode(HrLabels.Employee);
            taylor.setProperty(Employee.NAME, "Rose");
            taylor.setProperty(Employee.SURNAME, "Taylor");

            Node underwood = graphDb.createNode(HrLabels.Employee);
            underwood.setProperty(Employee.NAME, "Heather");
            underwood.setProperty(Employee.MIDDLE_NAME, "Mary");
            underwood.setProperty(Employee.SURNAME, "Underwood");

            Node smith = graphDb.createNode(HrLabels.Employee);
            smith.setProperty(Employee.NAME, "John");
            smith.setProperty(Employee.SURNAME, "Smith");

            // There is a vacant post in the company
            Node vacantPost = graphDb.createNode();

            // davies belongs to CC1
            davies.createRelationshipTo(cc1, EmployeeRelationship.BELONGS_TO)
                    .setProperty(EmployeeRelationship.FROM,
                            new GregorianCalendar(2011, 1, 10).getTimeInMillis());

            // .. and reports to Taylor
            davies.createRelationshipTo(taylor, EmployeeRelationship.REPORTS_TO);

            // Taylor is the manager of CC1
            taylor.createRelationshipTo(cc1, EmployeeRelationship.MANAGER_OF)
                    .setProperty(EmployeeRelationship.FROM,
                            new GregorianCalendar(2010, 2, 8).getTimeInMillis());

            // Smith belongs to CC2 from 2008
            smith.createRelationshipTo(cc2, EmployeeRelationship.BELONGS_TO)
                    .setProperty(EmployeeRelationship.FROM,
                            new GregorianCalendar(2008, 9, 20).getTimeInMillis());

            // Smith reports to underwood
            smith.createRelationshipTo(underwood, EmployeeRelationship.REPORTS_TO);

            // Underwood belongs to CC2
            underwood.createRelationshipTo(cc2, EmployeeRelationship.BELONGS_TO);

            // Underwood will report to an employee not yet hired
            underwood.createRelationshipTo(vacantPost, EmployeeRelationship.REPORTS_TO);

            // But the vacant post will belong to CC2
            vacantPost.createRelationshipTo(cc2, EmployeeRelationship.BELONGS_TO);

            tx.success();
        }
    }
}

In the preceding code, we used the following functions of the GraphDatabaseService class:

  • createNode: This creates a node and then returns it as result. The node will be created with a long, unique ID.

    Note

    Unlike relational databases, node IDs in Neo4j are not guaranteed to remain fixed forever. In fact, IDs are recomputed upon node deletion, so don't trust IDs, especially for long operations.

  • createRelationshipTo: This creates a relationship between two nodes and returns that relationship in a relationship instance. This one too will have a long, unique ID.

  • setProperty: This sets the value of a property of a node or a relationship.

We put the time in milliseconds in the property because Neo4j supports only the following types or an array of one of the following types:

  • boolean

  • byte

  • short

  • int

  • long

  • float

  • double

  • String

To store complex types of arrays, we can code them using the primitive types, as seen in the preceding list, but more often than not, the best approach is to create nodes. For example, if we have to store a property such as the entire address of a person, we can convert the address in JSON and store it as a string.

This way of storing data in a JSON format is common in document-oriented DBs, such as MongoDB, but since Neo4j isn't a document database, it won't build indexes on the properties of the document. So, for example, it would be difficult or very slow to query people by filtering on any field of the address, such as the ZIP code or the country. In other words, you should use this approach only for raw data that won't be filtered or processed with Cypher; in other cases, creating nodes is a better approach.

A querying database

A typical report of our application is a list of all the employees. In our database, an employee is a node labeled Employee, so we have to find all nodes that match with the label Employee pattern. In Cypher, this can be expressed with the following query:

MATCH (e:Employee)
RETURN e

The MATCH clause introduces the pattern we are looking for. The e:Employee expression matches all e nodes that have the label Employee; this expression is within round brackets because e is a node. So, we have the first rule of matching expressions—node expressions must be within round brackets.

With the RETURN clause, we can specify what we want; for example, we can write a query to return the whole node with all its properties. In this clause, we can use any variable used in the MATCH clause. In the preceding query, we have specified that we want the whole node (with all its properties). If we are interested only in the name and the surname of the employees, we can make changes only in the RETURN clause:

MATCH (e:Employee)
RETURN e.name,e.surname

If any node does not have either of the properties, a null value is returned. This is a general rule for properties from version 2 of Cypher; missing properties are evaluated as null values.

The next question is how to invoke Cypher from Java.

Invoking Cypher from Java

To execute Cypher queries on a Neo4j database, you need an instance of ExecutionEngine; this class is responsible for parsing and running Cypher queries, returning results in a ExecutionResult instance:

import org.neo4j.cypher.javacompat.ExecutionEngine;
import org.neo4j.cypher.javacompat.ExecutionResult;
// ...
ExecutionEngine engine = 
  new ExecutionEngine(graphDb);
ExecutionResult result = 
  engine.execute("MATCH (e:Employee) RETURN e");

Note that we use the org.neo4j.cypher.javacompat package and not the org.neo4j.cypher package even though they are almost the same. The reason is that Cypher is written in Scala, and Cypher authors provide us with the former package for better Java compatibility.

Now with the results, we can do one of the following options:

  • Dumping to a string value

  • Converting to a single column iterator

  • Iterating over the full row

Dumping to a string is useful for testing purposes:

String dumped = result.dumpToString();

If we print the dumped string to the standard output stream, we will get the following result:

Here, we have a single column (e) that contains the nodes. Each node is dumped with all its properties. The numbers between the square brackets are the node IDs, which are the long and unique values assigned by Neo4j on the creation of the node.

When the result is a single column, or we need only one column of our result, we can get an iterator over one column with the following code:

import org.neo4j.graphdb.ResourceIterator;
// ...
ResourceIterator<Node> nodes = result.columnAs("e");

Then, we can iterate that column in the usual way, as shown in the following code:

while(nodes.hasNext()) {
   Node node = nodes.next();
   // do something with node
}

However, Neo4j provides a syntax-sugar utility to shorten the code that is to be iterated:

import org.neo4j.helpers.collection.IteratorUtil;
// ...
for (Node node : IteratorUtil.asIterable(nodes)) {
   // do something with node
}

If we need to iterate over a multiple-column result, we will write this code in the following way:

ResourceIterator<Map<String, Object>> rows = result.iterator();
for(Map<String,Object> row : IteratorUtil.asIterable(rows)) {
   Node n = (Node) row.get("e");
   try(Transaction t = n.getGraphDatabase().beginTx()) {
       // do something with node
   }
}

The iterator function returns an iterator of maps, where keys are the names of the columns. Note that when we have to work with nodes, even if they are returned by a Cypher query, we have to work in transaction. In fact, Neo4j requires that every time we work with the database, either reading or writing to the database, we must be in a transaction. The only exception is when we launch a Cypher query. If we launch the query within an existing transaction, Cypher will work as any other operation. No change will be persisted on the database until we commit the transaction, but if we run the query outside any transaction, Cypher will open a transaction for us and will commit changes at the end of the query.

Finding nodes by relationships

If you have ever used the Neo4j Java API, you might wonder why we should write the following code:

ExecutionEngine engine = 
  new ExecutionEngine(graphDb, StringLogger.SYSTEM);
ExecutionResult result = 
  engine.execute("MATCH (e:Employee) RETURN e");
ResourceIterator<Node> nodes = result.columnAs("e");

You can get the same result with the Java API with a single line of code:

import org.neo4j.tooling.GlobalGraphOperations;
// ...
ResourceIterable<Node> empl = GlobalGraphOperations.at(graphDb)
                    .getAllNodesWithLabel(HrLabels.Employee);

However, pattern matching is much more powerful. By making slight changes to the query, we can get very important and different results; for example, we can find nodes that have relationships with other nodes. The query is as follows:

MATCH (n:Employee) --> (cc:CostCenter)
RETURN cc,n

The preceding query returns all employees that have a relation with any cost center:

Again, as you can see, both n and cc are within round brackets. Here, the RETURN clause specifies both n and cc, which are the two columns returned. The result would be the same if we specified an asterisk instead of n and cc in the RETURN clause:

MATCH (n:Employee) --> (cc:CostCenter)
RETURN *

In fact, similar to SQL, the asterisk implies all the variables referenced in the patterns, but unlike SQL, not all properties of the entities are involved, just those of the referenced ones. In the previous query, relationships were not returned because we didn't put a variable in square brackets.

Filtering properties

By making another slight change to the query, we can get all the employees that have a relation with a specific cost center, for example CC1. We have to filter the code property as shown in the following code:

MATCH (n:Employee) --> (:CostCenter { code: 'CC1' })
RETURN n

If we compare this query with the previous one, we can note three differences, which are listed as follows:

  • The query returns only the employee node n because we don't care about the center cost here.

  • Here, we omitted the cc variable. This is possible because we don't need to give a name to the cost center that matches the expression.

  • In the second query, we added curly brackets in the cost center node to specify the property we are looking for. So, this is another rule of pattern-matching expressions: properties are expressed within curly brackets.

The --> symbol specifies the direction of the relation; in this case, outgoing from n. In the case of MATCH expressions, we can also use the <-- symbol for inverse direction. The following expression is exactly equivalent to the previous expression:

MATCH (:CostCenter { code: 'CC1' } ) <-- (n:Employee)
RETURN n

The preceding expression will give the same result:

+-----------------------------------------+
| n                                       |
+-----------------------------------------+
| Node[2]{name:"Nathan",surname:"Davies"} |
| Node[3]{name:"Rose",surname:"Taylor"}   |
+-----------------------------------------+

If we don't have a preferred direction, we will use the -- symbol:

MATCH (n:Employee) -- (:CostCenter { code: 'CC1' } )
RETURN n

In our example, the latter query will return the same result as the previous one because in our model, relationships go from employees to cost centers.

Filtering relationships

If we wish to know the existing relationships between the employees and cost centers, we will have to introduce another variable:

MATCH (n:Employee) -[r]- (:CostCenter { code: 'CC1' })
RETURN n.surname,n.name,r

The variable r matches any relationship that exists between the employees and cost center CC1 and is returned in a new column:

+-----------------------------------------------------------+
| n.surname | n.name   | r                                  |
+-----------------------------------------------------------+
| "Davies"  | "Nathan" | :BELONGS_TO[0]{from:1297292400000} |
| "Taylor"  | "Rose"   | :MANAGER_OF[2]{from:1268002800000} |
+-----------------------------------------------------------+

So, here we have the last rule: relationship expressions must be specified in square brackets.

To filter the employees who belong to a specific cost centre, we have to specify the relationship type:

MATCH (n) -[:BELONGS_TO]-> (:CostCenter { code: 'CC1' } )
RETURN n

This query matches any node n, which has a relation of the BELONGS_TO type with any node cc that has the value CC1 as a property code:

+-----------------------------------------+
| n                                       |
+-----------------------------------------+
| Node[2]{name:"Nathan",surname:"Davies"} |
+-----------------------------------------+

We can specify multiple relationships using the | operator. The following query will search for all employees who belong to or are managers of the cost center CC1:

MATCH (n) -[r:BELONGS_TO|MANAGER_OF]-> (:CostCenter{code: 'CC1'})
RETURN n.name,n.surname,r

This time we returned only the name and surname, while the relationship is returned in the second column:

+-----------------------------------------------------------+
| n.name   | n.surname | r                                  |
+-----------------------------------------------------------+
| "Nathan" | "Davies"  | :BELONGS_TO[0]{from:1297292400000} |
| "Rose"   | "Taylor"  | :MANAGER_OF[2]{from:1268002800000} |
+-----------------------------------------------------------+

By making a slight change to the query in the preceding code, we can return the manager as well as the employees of the cost center as the result. This can be implemented as shown in the following query:

MATCH (n) -[:BELONGS_TO]-> (cc:CostCenter) <-[:MANAGER_OF]- (m)
RETURN n.surname,m.surname,cc.code

In this query, we can see the expressivity of Cypher—a very intuitive syntax to translate the "node n belonging to the cost center having a manager m" pattern. The result is the following code:

+---------------------------------+
| n.surname | m.surname | cc.code |
+---------------------------------+
| "Davies"  | "Taylor"  | "CC1"   |
+---------------------------------+

Of course, we can chain an increasing number of relationship expressions to describe very complex patterns:

MATCH (n) -[:BELONGS_TO]->
      (cc:CostCenter) <-[:MANAGER_OF]- (m) <-[:REPORTS_TO]- (k)
RETURN n.surname,m.surname,cc.code, k.surname

Another query that is very useful in real-world applications is finding nodes reachable from one node with a certain number of steps and a certain depth. The ability to execute this kind of query, and search the neighborhood, is one of the strong points of graph databases:

MATCH (:Employee {surname: 'Smith'}) -[*2]- (neighborhood)
RETURN neighborhood

This query returns the nodes that you can reach, starting from the Davies node, by visiting exactly two relationships of the graph. The result contains duplicated nodes because we have several paths to reach each of them:

+---------------------------------------------------------------+
| neighborhood                                                  |
+---------------------------------------------------------------+
| Node[4]{name:"Heather",surname:"Underwood",middleName:"Mary"} |
| Node[6]{}                                                     |
| Node[1]{code:"CC2"}                                           |
| Node[6]{}                                                     |
+---------------------------------------------------------------+
4 rows

Tip

To get different values, we can use the DISTINCT keyword:

MATCH (:Employee {surname: 'Smith'}) -[ *2]- (neighborhood)
RETURN DISTINCT neighborhood

This time, we haven't specified any relationship type in the square brackets, so it matches any type. The expression *2 means exactly two steps. With a little change, we can also ask for the relationships we visited:

MATCH (:Employee {surname: 'Davies'}) -[r*2]- (neighborhood)
RETURN neighborhood, r

Of course, by changing the number in the expression, we can get the query to navigate any number of relationships. However, we could also want all the nodes that are reachable from a number of relationships in a range of step numbers, for example, from two to three:

MATCH (:Employee {surname: 'Smith'}) -[r*2..3]- (neighborhood)
RETURN neighborhood,r

This is very useful in real-world applications such as social networks because it can be used to build lists, for example, a list of people you may know.

If we also want the starting node in the result, we can modify the range to start from 0:

MATCH (:Employee{surname: 'Smith'}) -[r*0..2]- (neighborhood)
RETURN neighborhood,r

Dealing with missing parts

In our applications, we often need to get some information related to something that could be missing. For example, if we want to get a list of all employees who have a specific number of employees reporting to them, then we must deal with those employees too who have no employees reporting to them. In fact, we can write:

MATCH (e:Employee) <-[:REPORTS_TO]- (m:Employee)
RETURN e.surname,m.surname

From this, the following result is obtained:

+-------------------------+
| e.surname   | m.surname |
+-------------------------+
| "Taylor"    | "Davies"  |
| "Underwood" | "Smith"   |
+-------------------------+

However, this is not what we are looking for. In fact, we want all the employees, with all the employees that report to them as an option. This type of relation is similar to the OUTER JOIN clause of SQL and can be done in Cypher using OPTIONAL MATCH. This keyword allows us to use any pattern expression that can be used in the MATCH clause, but it describes only a pattern that could match. If the pattern does not match, the OPTIONAL MATCH clause sets any variable to null variable:

MATCH (e:Employee)
OPTIONAL MATCH (e) <-[:REPORTS_TO]- (m:Employee)
RETURN e.surname,m.surname, c.code

In this query, we slightly changed the previous one; we just inserted OPTIONAL MATCH (e). The effect is that the first part (e:Employee) must match, but the pattern following OPTIONAL MATCH may or may not match. So, this query returns any employee e, and if e has a relationship of the REPORTS_TO type with any other employee, this query is returned in m; otherwise, m will be a null value. The result is as follows:

 +-------------------------+
| e.surname   | m.surname |
+-------------------------+
| "Davies"    | <null>    |
| "Taylor"    | "Davies"  |
| "Underwood" | "Smith"   |
| "Smith"     | <null>    |
+-------------------------+

Note

Unlike object-oriented languages where referencing any property of a null object will result in a null-reference exception, in Cypher referencing, which is a property of the null node, we get a null value again.

Now, let's say that we also want to know whether the employee is the manager of any center cost, and if so, which one. Also, we want to know the cost center of any employee. For this, we can write the following code:

MATCH (e:Employee)
OPTIONAL MATCH (c:CostCenter) <–[:MANAGER_OF]- (e) <-[:REPORTS_TO]- (m:Employee)
RETURN e.surname,m.surname

The preceding code returns the following result:

+----------------------------------+
| e.surname   | m.surname | c.code |
+----------------------------------+
| "Davies"    | <null>    | <null> |
| "Taylor"    | "Davies"  | "CC1"  |
| "Underwood" | <null>    | <null> |
| "Smith"     | <null>    | <null> |
+----------------------------------+

What happened? Does it look like Smith does not report to Underwood anymore? This weird result is due to the fact that the whole pattern in OPTIONAL MATCH must match. We can't have partially matched patterns. Since we can add as many OPTIONAL MATCH expressions as we want to, we have to write the following code to get the result we are looking for:

MATCH (e:Employee)
OPTIONAL MATCH (e) <-[:REPORTS_TO]- (m:Employee)
OPTIONAL MATCH (e) -[:MANAGER_OF]-> (c:CostCenter)
RETURN e.surname, m.surname, c.code

In fact, the result is the following code:

+----------------------------------+
| e.surname   | m.surname | c.code |
+----------------------------------+
| "Davies"    | <null>    | <null> |
| "Taylor"    | "Davies"  | "CC1"  |
| "Underwood" | "Smith"   | <null> |
| "Smith"     | <null>    | <null> |
+----------------------------------+

This query works because we have two OPTIONAL MATCH clauses that can independently generate a successful match.

Working with paths

As we have seen earlier, graph databases are useful to find paths between two nodes:

MATCH path = (a{surname:'Davies'}) -[*]- (b{surname:'Taylor'})
RETURN path

This query uses a construct which we have not used so far—the path assignment, path =. The assignment of variables can be done only with paths. Note that the query in the preceding code returns all the possible paths from two nodes. Here, the result is two paths in our database:

[Node[2]{name:"Nathan",surname:"Davies"},:BELONGS_TO[0]{from:1297292400000},Node[0]{code:"CC1"},:MANAGER_OF[2]{from:1268002800000},Node[3]{name:"Rose",surname:"Taylor"}] |
 [Node[2]{name:"Nathan",surname:"Davies"},:REPORTS_TO[1]{},Node[3]{name:"Rose",surname:"Taylor"}]

However, what if we need the shortest path between them? The shortest path is the path with the least number of nodes visited. Clearly, we could iterate over all the paths and take the shortest, but Cypher provides a function that does the work for us:

MATCH (a{surname:'Davies'}), (b{surname:'Taylor'})
RETURN allShortestPaths((a)-[*]-(b)) as path

Let's see what is new in this query:

  • MATCH: In this clause, we have two node expressions (in round brackets) separated by a comma. These expressions, a and b, match any node independently, just like a Cartesian product.

  • RETURN: In this clause, we have to call the allShortestPath function that takes an expression as a parameter. The expression is a variable length relation (this is the asterisk between the square brackets). Here, we don't care about relationship types and the direction, but we can filter properties, relation types involved, and so on, if necessary.

  • RETURN: In this clause, we have an alias. An alias must be defined using the keyword AS. It just specifies the name of the column returned.

Node IDs as starting points

When we execute a query like the previous code, Cypher must find the nodes and relationships that match the pattern. However, to do so, it must start to search from a set of nodes or relationships. We can let Cypher find the starting points of a query on its own, but we can also specify them because we want to search a pattern that starts from a specific node, or a specific relation resulting in an important improvement in the performances of the query.

We can assign starting points to variables in the query using the START keyword. The previous query, for example, could be rewritten in the following way:

START a=node(2), b=node(3)
RETURN allShortestPaths((a)-[*]-(b)) AS path

If we execute this query, and compare the time elapsed in executing this query and the previous one, we can easily prove that the latter is dramatically faster. The drawback is that we need to know the ID of the node.

Query parameters

In real-world applications, you often need to execute a query multiple times, changing a value in the query every time. For example, you need to find an employee by the surname, but the surname is typed by the application user from the keyboard. Cypher allows us to use parameters, just like in SQL. The names of the parameters must be between curly brackets:

MATCH (n:Employee {surname: {inputSurname} })
RETURN n

In this query, we have a parameter (inputSurname), whose value must be provided while executing the query.

Passing parameters with Java

The Cypher Java API wants us to pass all the parameters in the map. The following code is a class example that has a public method to find all employees by their surname:

import java.util.Map;
import java.util.HashMap;
import org.neo4j.cypher.javacompat.ExecutionEngine;
import org.neo4j.cypher.javacompat.ExecutionResult;
import org.neo4j.graphdb.Node;
import org.neo4j.helpers.collection.IteratorUtil;

public class EmployeeRepository {

   public Iterator<Node> bySurname(String surname) {
      Map<String, Object> params = new HashMap<>();
      params.put("inputSurname", surname);
      ExecutionResult result = engine
         .execute("MATCH (n:Employee {surname: {inputSurname}})" +       
                  "RETURN n",
                  params);
        Iterator<Node> nodes = result.columnAs("n");
        return nodes;
    }
}

The bySurname method takes the surname of the employees as a parameter to search, and it creates a new HashMap and puts the parameter in the map. Finally, the map is passed to the execute method of ExecutionEngine, and the result is treated in the usual way.

Tip

Since parameters are referenced by name, you can reference the same variable several times in the query.

You have been reading a chapter from
Learning Cypher
Published in: May 2014
Publisher:
ISBN-13: 9781783287758
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime