Improving application performance using parallel techniques
In Chapter 11, Mathematical and Parallel Techniques for Data Analysis, we consider some of the parallel techniques available for data science applications. Concurrent execution of a program can significantly improve performance. In relation to data science, these techniques range from low-level mathematical calculations to higher-level API-specific options.
This chapter includes a discussion of basic performance enhancement considerations. Algorithms and application architecture matter as much as enhanced code, and this should be considered when attempting to integrate parallel techniques. If an application does not behave in the expected or desired manner, any gains from parallel optimizing are irrelevant.
Matrix operations are essential to many data applications and supporting APIs. We will include a discussion in this chapter about matrix multiplication and how it is handled using a variety of approaches. Even though these operations...