Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Simulation Modeling with Python

You're reading from   Hands-On Simulation Modeling with Python Develop simulation models to get accurate results and enhance decision-making processes

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781838985097
Length 346 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Ciaburro Giuseppe Ciaburro
Author Profile Icon Giuseppe Ciaburro
Giuseppe Ciaburro
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: Getting Started with Numerical Simulation
2. Chapter 1: Introducing Simulation Models FREE CHAPTER 3. Chapter 2: Understanding Randomness and Random Numbers 4. Chapter 3: Probability and Data Generation Processes 5. Section 2: Simulation Modeling Algorithms and Techniques
6. Chapter 4: Exploring Monte Carlo Simulations 7. Chapter 5: Simulation-Based Markov Decision Processes 8. Chapter 6: Resampling Methods 9. Chapter 7: Using Simulation to Improve and Optimize Systems 10. Section 3: Real-World Applications
11. Chapter 8: Using Simulation Models for Financial Engineering 12. Chapter 9: Simulating Physical Phenomena Using Neural Networks 13. Chapter 10: Modeling and Simulation for Project Management 14. Chapter 11: What's Next? 15. Other Books You May Enjoy

Understanding the central limit theorem

The Monte Carlo method is essentially a numerical method for calculating the expected value of random variables; that is, an expected value that cannot be easily obtained through direct calculation. To obtain this result, the Monte Carlo method is based on two fundamental theorems of statistics: the law of large numbers and the central limit theorem.

Law of large numbers

This theorem states the following: considering a very large number of variables, , the integral that defines the average value is approximate to the estimate of the expected value. Let's try to give an example so that you understand this. We flip a coin 10 times, 100 times, and 1,000 times and check how many times we get heads. We can put the results we obtained into a table, as follows:

4.4 – Table showing the results for coin toss

Figure 4.4 – Table showing the results for coin toss

Analyzing the last column of the previous table, we can see that the value of the frequency...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime