Defensive technologies
Defensive technologies include software and devices used to thwart attackers. Some of these technologies are passive, presenting detections and alerts requiring intervention by any analyst. Other technologies are active, using workflows or rules to determine actions to take and act upon them. Antivirus software is an example of an active technology that acts upon a detection and then processes a rule. In this case, it would either be quarantine or delete. The following is a brief list of defensive technologies defenders can employ in the networks they are tasked to protect:
- Firewalls: Often considered the first line of defense, firewalls, like other security technologies, have advanced over the years. They originally started as just smart routers with access control lists (ACLs) on them. Later, they developed the ability to track and maintain state. The latest iteration, the next-generation firewall, goes beyond the previous two generations and incorporates the ability to look at and understand application behavior and apply intrusion prevention.
- Antivirus (AV) software: Just like firewalls, this was one of the first technologies to be developed to combat viruses. It, too, has gone through several enhancements over the years. In the beginning, antivirus was simply a set of signature-based rules that, once matched, the system was alerted and could even delete the malicious file(s) for you. As the industry matured, later generations began incorporating heuristic detection and the inspection of applications such as browsers, and merged with larger suites of products to perform multiple security operations. The latest generation has taken the previous lessons and not only applied them but added behavior detection for application and user interactions.
- Intrusion detection system (IDS): Intrusion detection systems in this category fall into two classifications. The first is network intrusion detection systems (NIDSs). In this configuration, a device or system is put into place that monitors the network traffic and applies a set of detection rules. Some NIDSs can also interact with network traffic. When this option is implemented, it is referred to as an intrusion prevention system or IPS. The second type is host intrusion detection system (HIDS), and unlike NIDS, these operate at the file system level on the monitored machines. HIDS, just like NIDS, have their limitations in that they only really look at one, or possibly two, elements of activity during transactions between machines. They are still widely implemented; however, other superior technologies such as next-gen firewalls and EDR systems have largely supplanted this category of security systems.
- Endpoint detection and response (EDR): EDR systems are some of the latest security tools to be introduced to enterprise security. This technology exists at the endpoint, be it a server or a workstation as an agent install. This agent collects and reports to a central repository where data is recorded and processed, applying and creating behavior profiles for applications and users alike. This can then be used to discover malicious behavior through alerts or hunting.
- Security information and event management (SIEM): SIEM can be described as the go-between for network detection and EDR systems. What SIEMs do is collect data from across the network, including logs, telemetry, and device information, to give a more holistic view of the enterprise. One example of the insight a SIEM brings would be if an attacker has gained access to a network and begins downloading tools and performing malicious activities. These activities would be detected by the SIEM based on rules and behaviors, leading to an alert to the appropriate security staff.
Now, to begin your journey into ethical hacking, let’s start by creating a lab environment in which we can test and explore.