Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Ensemble Learning with R

You're reading from   Hands-On Ensemble Learning with R A beginner's guide to combining the power of machine learning algorithms using ensemble techniques

Arrow left icon
Product type Paperback
Published in Jul 2018
Publisher Packt
ISBN-13 9781788624145
Length 376 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Prabhanjan Narayanachar Tattar Prabhanjan Narayanachar Tattar
Author Profile Icon Prabhanjan Narayanachar Tattar
Prabhanjan Narayanachar Tattar
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Introduction to Ensemble Techniques FREE CHAPTER 2. Bootstrapping 3. Bagging 4. Random Forests 5. The Bare Bones Boosting Algorithms 6. Boosting Refinements 7. The General Ensemble Technique 8. Ensemble Diagnostics 9. Ensembling Regression Models 10. Ensembling Survival Models 11. Ensembling Time Series Models 12. What's Next?
A. Bibliography Index

Interrating agreement

A simple extension of the measures discussed in the previous section on the ensemble classifiers is to compute the measures for all possible pairs of the ensemble and then simply average over all those values. This task constitutes the next exercise.

Exercise: For all possible combinations of ensemble pairs, calculate the disagreement measure, Yule's statistic, correlation coefficient, Cohen's kappa, and the double-fault measure. After doing this, obtain the average of the comparisons and report them as the ensemble diversity.

Here, we will propose alternative measures of diversity and kick-start the discussion with the entropy measure. In all discussions in this section, we will use the oracle outputs.

Entropy measure

You may recall that we denote the oracle outputs according to Entropy measure. For a particular instance, the ensemble is most diverse if the number of classifiers misclassifying it is Entropy measure. This means that Entropy measure of the Entropy measures are 0s, and the rest of the Entropy measure, Entropy measures are 1s. The entropy...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image