Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Generative AI with Python and PyTorch

You're reading from   Generative AI with Python and PyTorch Navigating the AI frontier with LLMs, Stable Diffusion, and next-gen AI applications

Arrow left icon
Product type Paperback
Published in Mar 2025
Publisher Packt
ISBN-13 9781835884447
Length 450 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Joseph Babcock Joseph Babcock
Author Profile Icon Joseph Babcock
Joseph Babcock
Raghav Bali Raghav Bali
Author Profile Icon Raghav Bali
Raghav Bali
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Introduction to Generative AI: Drawing Data from Models 2. Building Blocks of Deep Neural Networks FREE CHAPTER 3. The Rise of Methods for Text Generation 4. NLP 2.0: Using Transformers to Generate Text 5. LLM Foundations 6. Open-Source LLMs 7. Prompt Engineering 8. LLM Toolbox 9. LLM Optimization Techniques 10. Emerging Applications in Generative AI 11. Neural Networks Using VAEs 12. Image Generation with GANs 13. Style Transfer with GANs 14. Deepfakes with GANs 15. Diffusion Models and AI Art 16. Other Books You May Enjoy
17. Index

References

  1. López-Muñoz, F., Boya, J., and Alamo, C. (2006). Neuron theory, the cornerstone of neuroscience, on the centenary of the Nobel Prize award to Santiago Ramón y Cajal. Brain Research Bulletin. 70 (4–6): 391–405. https://pubmed.ncbi.nlm.nih.gov/17027775/
  2. Ramón y Cajal, S. (1888). Estructura de los centros nerviosos de las aves.
  3. McCulloch, W.S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115–133. https://doi.org/10.1007/BF02478259
  4. Rashwan, M., Ez, R., and Abd El reheem, G. (2017). Computational Intelligent Algorithms For Arabic Speech Recognition. Journal of Al-Azhar University Engineering Sector. 12. 886-893. 10.21608/auej.2017.19198. https://jaes.journals.ekb.eg/article_19198.html
  5. Artificial neuron. Wikipedia. Retrieved April 26, 2021, from https://en.wikipedia.org/wiki/Artificial_neuron
  6. Shackleton-Jones, N. (2019, May 3). How People Learn: Designing Education and Training that Works to Improve Performance. Kogan Page. London, United Kingdom
  7. Hebb, D. O. (1949). The Organization of Behavior: A Neuropsychological Theory. New York: Wiley and Sons
  8. Rosenblatt, F. (1957). The Perceptron—a perceiving and recognizing automaton. Report 85-460-1. Cornell Aeronautical Laboratory.
  9. Minsky, M. and Papert, S. (1972) (second edition with corrections, first edition 1969) Perceptrons: An Introduction to Computational Geometry, The MIT Press, Cambridge MA
  10. Hassan, H., Negm, A., Zahran, M., and Saavedra, O. (2015). Assessment of Artificial Neural Network for Bathymetry Estimation Using High Resolution Satellite Imagery in Shallow Lakes: Case Study El Burullus Lake. International Water Technology Journal. 5.
  11. Pollack, J. B. (1989). “No Harm Intended: A Review of the Perceptrons expanded edition”. Journal of Mathematical Psychology. 33 (3): 358–365.
  12. Crevier, D. (1993), AI: The Tumultuous Search for Artificial Intelligence, New York, NY: BasicBooks.
  13. Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signal Systems 2, 303–314 (1989). https://doi.org/10.1007/BF02551274
  14. Goodfellow, I., Bengio, Y., and Courville, A. (2016). 6.5 Back-Propagation and Other Differentiation Algorithms. Deep Learning. MIT Press. pp. 200–220
  15. Rumelhart, D., Hinton, G., and Williams, R. (1986) Learning representations by back-propagating errors. Nature 323, 533–536. https://doi.org/10.1038/323533a0
  16. Overview of PyTorch Autograd Engine: https://pytorch.org/blog/overview-of-pytorch-autograd-engine/
  17. Berland (2007). ReverseaccumulationAD.png. Wikipedia. Available from https://commons.wikimedia.org/wiki/File:ReverseaccumulationAD.png
  18. Automatic differentiation. Wikipedia. https://en.wikipedia.org/wiki/Automatic_differentiation
  19. Wengert, R.E. (1964). A simple automatic derivative evaluation program. Comm. ACM. 7 (8): 463–464.
  20. Bartholomew-Biggs, M., Brown, S., Christianson, B., and Dixon, L. (2000). Automatic differentiation of algorithms. Journal of Computational and Applied Mathematics. 124 (1–2): 171–190.
  21. The PyTorch authors (2018). automatic_differentiation.ipynb. Available from https://colab.research.google.com/github/PyTorch/PyTorch/blob/r1.9/PyTorch/contrib/eager/python/examples/notebooks/automatic_differentiation.ipynb#scrollTo=t09eeeR5prIJ
  22. The PyTorch authors. Introduction to gradients and automatic differentiation. PyTorch. Available from https://www.PyTorch.org/guide/autodiff
  23. Thomas (2018). The vanishing gradient problem and ReLUs—a PyTorch investigation. Adventures in Machine Learning. Available from https://adventuresinmachinelearning.com/vanishing-gradient-problem-PyTorch/
  24. Hinton, Osindero, and Yee-Whye (2005). A Fast Learning Algorithm for Deep Belief Nets. University of Toronto, Computer Science. Available from http://www.cs.toronto.edu/~fritz/absps/ncfast.pdf
  25. Cortes, C. and Vapnik, V. Support-vector networks. Mach Learn 20, 273–297 (1995). https://doi.org/10.1007/BF00994018
  26. Friedman, J. H. (February 1999). Greedy Function Approximation: A Gradient Boosting Machine (PDF)
  27. Breiman, L. Random Forests. Machine Learning 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324
  28. Tibshirani, R. (1996). Regression Shrinkage and Selection via the lasso. Journal of the Royal Statistical Society. Series B (methodological). Wiley. 58 (1): 267–88.
  29. Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B: 301–320
  30. Hubel, D. H. and Wiesel, T. N. (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol, 1962, 160: 106-154. https://doi.org/10.1113/jphysiol.1962.sp006837
  31. http://charlesfrye.github.io/FoundationalNeuroscience/img/corticalLayers.gif
  32. Wolfe, Kluender, and Levy (2009). Sensation and Perception. Sunderland: Sinauer Associates Inc..
  33. LeCun, Yann, et al. Backpropagation applied to handwritten zip code recognition. Neural Computation 1.4 (1989): 541-551.
  34. ImageNet Classification with Deep Convolutional Neural Networks: https://www.nvidia.cn/content/tesla/pdf/machine-learning/imagenet-classification-with-deep-convolutional-nn.pdf
  35. Nair, V. and Hinton, G E. (2010). Rectified Linear Units Improve Restricted Boltzmann Machines. Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, 2010.
  36. Agarap, A F. (2019). Avoiding the vanishing gradients problem using gradient noise addition. medium. https://medium.com/data-science/avoiding-the-vanishing-gradients-problem-96183fd03343
  37. Maas, A L., Hannun, A Y., and Ng, A Y. (2013). Rectifier Nonlinearities Improve Neural Network Acoustic Models. Proceedings of the 30th International Conference on Machine Learning, Atlanta, Georgia, USA.
  38. He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. arXiv:1502.01852. https://arxiv.org/abs/1502.01852
  39. Hinton, G E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580. https://arxiv.org/abs/1207.0580
  40. Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Part of Advances in Neural Information Processing Systems 25 (NIPS 2012). https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
  41. Ioffe, S. and Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv:1502.03167. https://arxiv.org/abs/1502.03167
  42. Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A. (2019). How Does Batch Normalization Help Optimization?. arXiv:1805.11604. https://arxiv.org/abs/1805.11604
  43. Dean, J. and Ng, A. Y. (2012). Using large-scale brain simulations for machine learning and A.I.. The Keyword | Google. https://blog.google/technology/ai/using-large-scale-brain-simulations-for/
  44. LeCun, Y., Bengio, Y., and Hinton, G. (2015) Deep learning. Nature 521, 436–444. https://www.nature.com/articles/nature14539.epdf
  45. Olah (2015). Understanding LSTM Networks. colah’s blog. Available from https://colah.github.io/posts/2015-08-Understanding-LSTMs/
  46. Mozer, M. C. (1995). A Focused Backpropagation Algorithm for Temporal Pattern Recognition. In Chauvin, Y.; Rumelhart, D. (eds.). Backpropagation: Theory, architectures, and applications. ResearchGate. Hillsdale, NJ: Lawrence Erlbaum Associates. pp. 137–169
  47. Greff, K., Srivastava, R K., Koutník, J., Steunebrink, B R., and Schmidhuber, J. (2017). LSTM: A Search Space Odyssey. arXiv:1503.04069v2. https://arxiv.org/abs/1503.04069v2
  48. Gers, F. A. and Schmidhuber, E. LSTM recurrent networks learn simple context-free and context-sensitive languages. IEEE Trans Neural Netw. 2001;12(6):1333-40. doi: 10.1109/72.963769. PMID: 18249962.
  49. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv:1406.1078. https://arxiv.org/abs/1406.1078
  50. Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance of initialization and momentum in deep learning. Proceedings of the 30th International Conference on Machine Learning, in PMLR 28(3):1139-1147.
  51. Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. Journal of Machine Learning Research 12 (2011) 2121-2159.
  52. Hinton, Srivastava, and Swersky. Neural Networks for Machine Learning, Lecture 6a. Available from http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
  53. Zeiler, M. D. (2012). ADADELTA: An Adaptive Learning Rate Method. arXiv:1212.5701. https://arxiv.org/abs/1212.5701
  54. Kingma, D. P. and Ba, J. (2017). Adam: A Method for Stochastic Optimization. arXiv:1412.6980. https://arxiv.org/abs/1412.6980
  55. Martens, J. (2010). Deep Learning via Hessian-free Optimization. ICML. Vol. 27. 2010.
  56. Glorot, X. and Bengio, Y., (2010). Understanding the difficulty of training deep feedforward neural networks. Proceedings of the 13th International Conference on Artificial Intelligence and Statistics.
  57. He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. arXiv:1502.01852. https://arxiv.org/abs/1502.01852
  58. Kagan, et al. (2022). In vitro neurons learn and exhibit sentience when embodied in a simulated game-world. Neuron volume 110, issue 23, P3952-3969.E8,
You have been reading a chapter from
Generative AI with Python and PyTorch - Second Edition
Published in: Mar 2025
Publisher: Packt
ISBN-13: 9781835884447
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime