Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Feature Engineering Made Easy

You're reading from   Feature Engineering Made Easy Identify unique features from your dataset in order to build powerful machine learning systems

Arrow left icon
Product type Paperback
Published in Jan 2018
Publisher Packt
ISBN-13 9781787287600
Length 316 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Divya Susarla Divya Susarla
Author Profile Icon Divya Susarla
Divya Susarla
Sinan Ozdemir Sinan Ozdemir
Author Profile Icon Sinan Ozdemir
Sinan Ozdemir
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Introduction to Feature Engineering 2. Feature Understanding – What's in My Dataset? FREE CHAPTER 3. Feature Improvement - Cleaning Datasets 4. Feature Construction 5. Feature Selection 6. Feature Transformations 7. Feature Learning 8. Case Studies 9. Other Books You May Enjoy

Case study 2 - predicting topics of hotel reviews data


Our second case study will take a look at hotel reviews data and attempt to cluster the reviews into topics. We will be employing a latent semantic analysis (LSA), which is a name given to the process of applying a PCA on sparse text document—term matrices. It is done to find latent structures in text for the purpose of classification and clustering. 

Applications of text clustering

Text clustering is the act of assigning different topics to pieces of text for the purpose of understanding what documents are about. Imagine a large hotel chain that gets thousands of reviews a week from around the world. Employees of the hotel would like to know what people are saying in order to have a better idea of what they are doing well and what can be improved.

Of course, the limiting factor here is the ability for humans to read all of these texts quickly and correctly. We can train machines to identify the types of things that people are talking about...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image