Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
ETL with Azure Cookbook

You're reading from   ETL with Azure Cookbook Practical recipes for building modern ETL solutions to load and transform data from any source

Arrow left icon
Product type Paperback
Published in Sep 2020
Publisher Packt
ISBN-13 9781800203310
Length 446 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Authors (3):
Arrow left icon
Christian Cote Christian Cote
Author Profile Icon Christian Cote
Christian Cote
Matija Lah Matija Lah
Author Profile Icon Matija Lah
Matija Lah
Madina Saitakhmetova Madina Saitakhmetova
Author Profile Icon Madina Saitakhmetova
Madina Saitakhmetova
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Chapter 1: Getting Started with Azure and SSIS 2019 2. Chapter 2: Introducing ETL FREE CHAPTER 3. Chapter 3: Creating and Using SQL Server 2019 Big Data Clusters 4. Chapter 4: Azure Data Integration 5. Chapter 5: Extending SSIS with Custom Tasks and Transformations 6. Chapter 6: Azure Data Factory 7. Chapter 7: Azure Databricks 8. Chapter 8: SSIS Migration Strategies 9. Chapter 9: Profiling data in Azure 10. Chapter 10: Manage SSIS and Azure Data Factory with Biml 11. Other Books You May Enjoy

Data factory creation

This is our first recipe in this chapter. We will create and explore the various Data Factory components. The following recipes will use the same data factory to move and transform data.

As shown in the following diagram, a data factory contains the following components. Azure Storage and SQL Database are not part of the factory; they are just an example of a simple copy activity that Data Factory can do:

Figure 6.1 – An overview of Azure Data Factory

The two main components are triggers and pipelines.

A trigger is essentially a mechanism that starts a pipeline execution. There are three types of triggers:

  • Scheduler: Can be based on a wall clock schedule or based on tumbling windows. A tumbling window essentially triggers the pipeline execution every n time: for example, every 5 minutes, hours, and so on.
  • Event: Detects the presence of a file in an Azure Storage account. Once the file is detected, the pipeline...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image