Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Deep Learning with R for Beginners

You're reading from   Deep Learning with R for Beginners Design neural network models in R 3.5 using TensorFlow, Keras, and MXNet

Arrow left icon
Product type Course
Published in May 2019
Publisher Packt
ISBN-13 9781838642709
Length 612 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (4):
Arrow left icon
Mark Hodnett Mark Hodnett
Author Profile Icon Mark Hodnett
Mark Hodnett
Pablo Maldonado Pablo Maldonado
Author Profile Icon Pablo Maldonado
Pablo Maldonado
Joshua F. Wiley Joshua F. Wiley
Author Profile Icon Joshua F. Wiley
Joshua F. Wiley
Yuxi (Hayden) Liu Yuxi (Hayden) Liu
Author Profile Icon Yuxi (Hayden) Liu
Yuxi (Hayden) Liu
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Title Page
Copyright and Credits
About Packt
Contributors
Preface
1. Getting Started with Deep Learning FREE CHAPTER 2. Training a Prediction Model 3. Deep Learning Fundamentals 4. Training Deep Prediction Models 5. Image Classification Using Convolutional Neural Networks 6. Tuning and Optimizing Models 7. Natural Language Processing Using Deep Learning 8. Deep Learning Models Using TensorFlow in R 9. Anomaly Detection and Recommendation Systems 10. Running Deep Learning Models in the Cloud 11. The Next Level in Deep Learning 12. Handwritten Digit Recognition using Convolutional Neural Networks 13. Traffic Signs Recognition for Intelligent Vehicles 14. Fraud Detection with Autoencoders 15. Text Generation using Recurrent Neural Networks 16. Sentiment Analysis with Word Embedding 1. Other Books You May Enjoy Index

What is so exciting about recurrent neural networks?


Coming from a mathematics background, in my rather hectic career I have seen many different trends, particularly during the last few years, which all sound very similar to me: "you have a problem? wavelets can save you!", "finite elements are the solution to everything", and similar over-enthusiastic claims. 

Of course, each tool has its time and place and, more importantly, an application domain where it excels. I find recurrent neural networks quite interesting for the many features they can achieve:

  • Produce consistent markup text (opening and closing tags, recognizing timestamp-like data)
  • Write Wikipedia articles with references, and create URLs from non-existing addresses, by learning what a URL should look like
  • Create credible-looking scientific papers from LaTeX

All these amazing features are possible without the network having any context information or metadata. In particular, without knowing English, nor what a URL or a bit of LaTeX...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime