Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Science Projects with Python

You're reading from   Data Science Projects with Python A case study approach to gaining valuable insights from real data with machine learning

Arrow left icon
Product type Paperback
Published in Jul 2021
Publisher Packt
ISBN-13 9781800564480
Length 432 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Stephen Klosterman Stephen Klosterman
Author Profile Icon Stephen Klosterman
Stephen Klosterman
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface
1. Data Exploration and Cleaning 2. Introduction to Scikit-Learn and Model Evaluation FREE CHAPTER 3. Details of Logistic Regression and Feature Exploration 4. The Bias-Variance Trade-Off 5. Decision Trees and Random Forests 6. Gradient Boosting, XGBoost, and SHAP Values 7. Test Set Analysis, Financial Insights, and Delivery to the Client Appendix

Gradient Boosting and XGBoost

What Is Boosting?

Boosting is a procedure for creating ensembles of many machine learning models, or estimators, similar to the bagging concept that underlies the random forest model. Like bagging, while boosting can be used with any kind of machine learning model, it is commonly used to build ensembles of decision trees. A key difference from bagging is that in boosting, each new estimator added to the ensemble depends on all the estimators added before it. Because the boosting procedure proceeds in sequential stages, and the predictions of ensemble members are added up to calculate the overall ensemble prediction, it is also called stagewise additive modeling. The difference between bagging and boosting can be visualized as in Figure 6.1:

Figure 6.1: Bagging versus boosting

While bagging trains many estimators using different random samples of the training data, boosting trains new estimators using information about which...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime