Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data-Centric Machine Learning with Python

You're reading from   Data-Centric Machine Learning with Python The ultimate guide to engineering and deploying high-quality models based on good data

Arrow left icon
Product type Paperback
Published in Feb 2024
Publisher Packt
ISBN-13 9781804618127
Length 378 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Jonas Christensen Jonas Christensen
Author Profile Icon Jonas Christensen
Jonas Christensen
Manmohan Gosada Manmohan Gosada
Author Profile Icon Manmohan Gosada
Manmohan Gosada
Nakul Bajaj Nakul Bajaj
Author Profile Icon Nakul Bajaj
Nakul Bajaj
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1: What Data-Centric Machine Learning Is and Why We Need It FREE CHAPTER
2. Chapter 1: Exploring Data-Centric Machine Learning 3. Chapter 2: From Model-Centric to Data-Centric – ML’s Evolution 4. Part 2: The Building Blocks of Data-Centric ML
5. Chapter 3: Principles of Data-Centric ML 6. Chapter 4: Data Labeling Is a Collaborative Process 7. Part 3: Technical Approaches to Better Data
8. Chapter 5: Techniques for Data Cleaning 9. Chapter 6: Techniques for Programmatic Labeling in Machine Learning 10. Chapter 7: Using Synthetic Data in Data-Centric Machine Learning 11. Chapter 8: Techniques for Identifying and Removing Bias 12. Chapter 9: Dealing with Edge Cases and Rare Events in Machine Learning 13. Part 4: Getting Started with Data-Centric ML
14. Chapter 10: Kick-Starting Your Journey in Data-Centric Machine Learning 15. Index 16. Other Books You May Enjoy

Preface

If you’re reading this, you’ve taken the first steps on a pioneering journey to building and implementing machine learning models that are more robust, accurate, fairer, less biased, and easier to explain.

This is a big claim, we know. We are comfortable making it, however, on the basis of the huge and relatively untapped potential we see in the data-centric approach to machine learning development.

Why do we consider data-centric machine learning pioneering?

It may seem obvious that improving data quality will lead to more predictive models. However, machine learning research to date has mainly focused on evolving the various algorithms and tools to build and tune models.

As a result, we have available at our fingertips a vast array of machine learning algorithms, tools, and techniques that can give us great models at a low cost, given the right quality and volume of input data.

Model architectures are largely a solved problem in most situations. What data scientists, and the organizations they work in, typically lack are best-practice frameworks, tools, and techniques for improving data quality.

Data-centric machine learning builds on the predominant model-centric approach to model development by exploiting the big opportunities that lie in better input data.

Putting a bigger emphasis on data collection and engineering requires us to streamline our processes for collecting quality data and invent new techniques for engineering datasets that provide more signals with much less data.

Many of the techniques and examples you will learn about in this book are based on cutting-edge research and the application of modern practices to collecting, engineering, and synthetically generating great datasets.

Data-centric machine learning also necessitates a much stronger collaboration between data scientists, subject-matter experts, and data labelers. As you will learn throughout this book, data-centricity typically starts with humans collecting and labeling data in a way that serves operational and data science needs.

In many organizations, it is uncommon to collect data for machine learning purposes specifically. A more systematic approach to collecting and labeling data for data science will not only lead to better data but also bring together the thinking and creativity of subject-matter experts and data scientists. This positive feedback loop between different kinds of domain experts creates new opportunities for ideas to flourish far beyond the scope of individual machine learning projects.

Why do we claim that data-centric models will be better than their model-centric counterparts in almost every aspect?

Think of any high-quality consumer product you use regularly. It may be your computer, the car you drive, the chair you sit on, or something else that has required some level of design and engineering.

What makes it high-quality?

Design and functionality have a lot to do with it, but unless the product is made of quality materials, it will not work as intended or it may break altogether. Something is only high-quality if it works as intended, and does so consistently.

The same goes for machine learning models. By systematically improving data quality – our building materials – we are able to build models that are more predictive, robust, and interpretable.

We have written this book to give you, our readers, the most important background knowledge, tools, techniques, and applied examples needed to implement data-centric machine learning and take part in the next phase of the AI revolution.

In the technical chapters of this book, we will show you how to apply the principles of data-centric machine learning to real datasets, using Python. The techniques and applied examples we explore will provide you with a toolbox to systematically and programmatically collect, clean, augment, and label data, as well as to identify and remove unwanted bias.

At the end of this book, you will have a strong appreciation for the building blocks and best-practice approaches of data-centric machine learning.

Don’t just take our word for it. Let’s explore data-centric machine learning in depth.

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image