Architecture of CNNs
When we are working with ordinary neural networks, we need to convert the input data into a single vector. This vector acts as the input to the neural network, which then passes through the layers of the neural network. In these layers, each neuron is connected to all the neurons in the previous layer. It is also worth noting that the neurons within each layer are not connected to each other. They are only connected to the neurons in the adjacent layers. The last layer in the network is the output layer and it represents the final output.
If we use this structure for images, it will quickly become unmanageable. For example, let's consider an image dataset consisting of 256×256 RGB images. Since these are 3-channel images, there would be 256 * 256 * 3 = 196,608 weights. Note that this is just for a single neuron! Each layer will have multiple neurons, so the number of weights tends to increase rapidly. This means that the model will now have an enormous...