Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Advanced Machine Learning with Python

You're reading from   Advanced Machine Learning with Python Solve challenging data science problems by mastering cutting-edge machine learning techniques in Python

Arrow left icon
Product type Paperback
Published in Jul 2016
Publisher Packt
ISBN-13 9781784398637
Length 278 pages
Edition 1st Edition
Languages
Arrow right icon
Toc

Chapter 2. Deep Belief Networks

In the preceding chapter, we looked at some widely-used dimensionality reduction techniques, which enable a data scientist to get greater insight into the nature of datasets.

The next few chapters will focus on some more sophisticated techniques, drawing from the area of deep learning. This chapter is dedicated to building an understanding of how to apply the Restricted Boltzmann Machine (RBM) and manage the deep learning architecture one can create by chaining RBMs—the deep belief network (DBN). DBNs are trainable to effectively solve complex problems in text, image, and sound recognition. They are used by leading companies for object recognition, intelligent image search, and robotic spatial recognition.

The first thing that we're going to do is get a solid grounding in the algorithm underlying DBN; unlike clustering or PCA, this code isn't widely-known by data scientists and we're going to review it in some depth to build...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image