Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
What's New in TensorFlow 2.0
What's New in TensorFlow 2.0

What's New in TensorFlow 2.0: Use the new and improved features of TensorFlow to enhance machine learning and deep learning

Arrow left icon
Profile Icon Baranwal Profile Icon Alizishaan Khatri
Arrow right icon
$19.99 per month
Full star icon Full star icon Full star icon Full star icon Full star icon 5 (2 Ratings)
Paperback Aug 2019 202 pages 1st Edition
eBook
$13.98 $19.99
Paperback
$26.99
Subscription
Free Trial
Renews at $19.99p/m
Arrow left icon
Profile Icon Baranwal Profile Icon Alizishaan Khatri
Arrow right icon
$19.99 per month
Full star icon Full star icon Full star icon Full star icon Full star icon 5 (2 Ratings)
Paperback Aug 2019 202 pages 1st Edition
eBook
$13.98 $19.99
Paperback
$26.99
Subscription
Free Trial
Renews at $19.99p/m
eBook
$13.98 $19.99
Paperback
$26.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

What's New in TensorFlow 2.0

Getting Started with TensorFlow 2.0

This book aims to familiarize readers with the new features introduced in TensorFlow 2.0 (TF 2.0) and to empower you to unlock its potential while building machine learning applications. This chapter provides a bird's-eye view of new architectural and API-level changes in TF 2.0. We will cover TF 2.0 installation and setup, and will compare the changes with respect to TensorFlow 1.x (TF 1.x), such as Keras APIs and layer APIs. We will also cover the addition of rich extensions, such as TensorFlow Probability, Tensor2Tensor, Ragged Tensors, and the newly available custom training logic for loss functions. This chapter also summarizes the changes to the layers API and other APIs.

The following topics will be covered in this chapter:

  • What's new?
  • TF 2.0 installation and setup
  • Using TF 2.0
  • Rich extensions
...

Technical requirements

You will need the following before you can start executing the steps described in the sections ahead:

  • Python 3.4 or higher
  • A computer with Ubuntu 16.04 or later (The instructions remain similar for most *NIX-based systems such as macOS or other Linux variants)

What's new?

The philosophy of TF 2.0 is based on simplicity and ease of use. The major updates include easy model building with tf.keras and eager execution, robust model deployment for production and commercial use for any platform, powerful experimentation techniques and tools for research, and API simplification for a more intuitive organization of APIs.

The new organization of TF 2.0 is simplified by the following diagram:

The preceding diagram is focused on using the Python API for training and deploying; however, the same process is followed with the other supported languages including Julia, JavaScript, and R. The flow of TF 2.0 is separated into two sections—model training and model deployment, where model training includes the data pipelines, model creation, training, and distribution strategies; and model deployment includes the variety of means of deployment...

TF 2.0 installation and setup

This section describes the steps required to install TF 2.0 on your system using different methods and on different system configurations. Entry-level users are recommended to start with the pip- and virtualenv-based methods. For users of the GPU version, docker is the recommended method.

Installing and using pip

For the uninitiated, pip is a popular package management system in the Python community. If this is not installed on your system, please install it before proceeding further. On many Linux installations, Python and pip are installed by default. You can check whether pip is installed by typing the following command:

python3 -m pip --help

If you see a blurb describing the different commands...

Using TF 2.0

TF 2.0 can be used in two main ways—using low-level APIs and using high-level APIs. To use the low-level APIs in TF 2.0, APIs such as tf.GradientTape and tf.function are implemented.

The code flow for writing low-level code is to define a forward pass inside of a function that takes the input data as an argument. This function is then annotated with the tf.function decorator in order to run it in graph mode along with all of its benefits. To record and get the gradients of the forward pass, both the decorator function and the loss function are run inside the tf.GradientTape context manager, from which gradients can be calculated and applied on the model variables.

Training code can also be written using the low-level APIs for tf.keras models by using tf.GradientTape. This is for when more control and customizability is needed over the default tf.keras.Model...

Technical requirements

In order to run the code excerpts given in this chapter, you will need the following hardware and software: 

  • TF 2.0 or higher (either of the CPU or GPU versions will suffice)
  • Python 3.4+ (currently, the highest Python version supported by TensorFlow is 3.6)
  • NumPy (if not automatically installed by TensorFlow)

The code files for this chapter are available at https://github.com/PacktPublishing/What-s-New-in-TensorFlow-2.0/tree/master/Chapter02.

New abstractions in TF 2.0

Abstractions are a very popular tool used in the process of programming and software development. In a very high-level sense, an abstraction refers to the process of isolating and describing the central idea of a particular task or set of tasks without necessarily specifying the physical, spatial, or temporal details. When done right, an abstraction can significantly reduce the amount of code that needs to be written for a particular task. It also boosts the reusability of existing code and makes it compatible with TF 2.0.

While working with machine learning systems, there are some common high-level tasks, such as training data, modeling, model evaluation, prediction, model storing, and model loading, that are common across a wide variety of tasks. An end programmer might also want to just modify one small component of the application while leaving the...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Explore TF Keras APIs and strategies to run GPUs, TPUs, and compatible APIs across the TensorFlow ecosystem
  • Learn and implement best practices for building data ingestion pipelines using TF 2.0 APIs
  • Migrate your existing code from TensorFlow 1.x to TensorFlow 2.0 seamlessly

Description

TensorFlow is an end-to-end machine learning platform for experts as well as beginners, and its new version, TensorFlow 2.0 (TF 2.0), improves its simplicity and ease of use. This book will help you understand and utilize the latest TensorFlow features. What's New in TensorFlow 2.0 starts by focusing on advanced concepts such as the new TensorFlow Keras APIs, eager execution, and efficient distribution strategies that help you to run your machine learning models on multiple GPUs and TPUs. The book then takes you through the process of building data ingestion and training pipelines, and it provides recommendations and best practices for feeding data to models created using the new tf.keras API. You'll explore the process of building an inference pipeline using TF Serving and other multi-platform deployments before moving on to explore the newly released AIY, which is essentially do-it-yourself AI. This book delves into the core APIs to help you build unified convolutional and recurrent layers and use TensorBoard to visualize deep learning models using what-if analysis. By the end of the book, you'll have learned about compatibility between TF 2.0 and TF 1.x and be able to migrate to TF 2.0 smoothly.

Who is this book for?

If you’re a data scientist, machine learning practitioner, deep learning researcher, or AI enthusiast who wants to migrate code to TensorFlow 2.0 and explore the latest features of TensorFlow 2.0, this book is for you. Prior experience with TensorFlow and Python programming is necessary to understand the concepts covered in the book.

What you will learn

  • Implement tf.keras APIs in TF 2.0 to build, train, and deploy production-grade models
  • Build models with Keras integration and eager execution
  • Explore distribution strategies to run models on GPUs and TPUs
  • Perform what-if analysis with TensorBoard across a variety of models
  • Discover Vision Kit, Voice Kit, and the Edge TPU for model deployments
  • Build complex input data pipelines for ingesting large training datasets

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Aug 12, 2019
Length: 202 pages
Edition : 1st
Language : English
ISBN-13 : 9781838823856
Vendor :
Google
Category :
Languages :
Concepts :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Aug 12, 2019
Length: 202 pages
Edition : 1st
Language : English
ISBN-13 : 9781838823856
Vendor :
Google
Category :
Languages :
Concepts :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 157.98
Implementing Deep Learning Algorithms with TensorFlow 2.0
$130.99
What's New in TensorFlow 2.0
$26.99
Total $ 157.98 Stars icon

Table of Contents

12 Chapters
Section 1: TensorFlow 2.0 - Architecture and API Changes Chevron down icon Chevron up icon
Getting Started with TensorFlow 2.0 Chevron down icon Chevron up icon
Keras Default Integration and Eager Execution Chevron down icon Chevron up icon
Section 2: TensorFlow 2.0 - Data and Model Training Pipelines Chevron down icon Chevron up icon
Designing and Constructing Input Data Pipelines Chevron down icon Chevron up icon
Model Training and Use of TensorBoard Chevron down icon Chevron up icon
Section 3: TensorFlow 2.0 - Model Inference and Deployment and AIY Chevron down icon Chevron up icon
Model Inference Pipelines - Multi-platform Deployments Chevron down icon Chevron up icon
AIY Projects and TensorFlow Lite Chevron down icon Chevron up icon
Section 4: TensorFlow 2.0 - Migration, Summary Chevron down icon Chevron up icon
Migrating From TensorFlow 1.x to 2.0 Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Full star icon 5
(2 Ratings)
5 star 100%
4 star 0%
3 star 0%
2 star 0%
1 star 0%
Sanjay Kumar Gupta Oct 12, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Very eloquent and clear book that explains core concepts of Machine Learning in relation to TensorFlow quite well. Some parts read almost like you’re having a friend teach you directly, without getting lost in the jargon.
Amazon Verified review Amazon
Sudarshan Apr 07, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Very good book for understanding TensorFlow 2.0 APIs in comparison to 1.x version. Organized really well to maintain the continuity of the content.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.